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CHAPTER 1

Tutorials

1.1 Training LeNet on MNIST

This tutorial goes through the code in examples/mnist to explain the basic usages of Mocha. We will use the
architecture known as [LeNet], which is a deep convolutional neural network known to work well on handwritten
digit classification tasks. More specifically, we will use the Caffe’s modified architecture, by replacing the sigmoid
activation functions with Rectified Learning Unit (ReLU) activation functions.

1.1.1 Preparing the Data

MNIST is handwritten digit recognition dataset containing 60,000 training examples and 10,000 test examples.
Each example is a 28x28 single channel grayscale image. The dataset in a binary format could be downloaded
from Yann LeCun’s website. We have created a script get-mnist.sh to download the dataset, and it will call
mnist.convert.jl to convert the binary dataset into HDF5 file that Mocha could read.

When the conversion finishes, data/train.hdf5 and data/test.hdf5 will be generated.

1.1.2 Defining the Network Architecture

The LeNet consists of a convolution layer followed by a pooling layer, and then another convolution followed by a
pooling layer. After that, two densely connected layers were added. We don’t use a configuration file to define a
network architecture like Caffe, instead, the network definition is directly done in Julia. First of all, let’s import the
Mocha package.

using Mocha

Then we will define a data layer, which read the HDF5 file and provide input for the network:

data_layer = HDF5DataLayer(source="data/train.txt", batch_size=64)

Note the source is a simple text file what contains a list of real data files (in this case data/train.hdf5). This
behavior is the same as in Caffe, and could be useful when your dataset contains a lot of files. Note we also specified
the batch size as 64.

Next we define a convolution layer in a similar way:

conv_layer = ConvolutionLayer(name="conv1", n_filter=20, kernel=(5,5), bottoms=[:data], tops=[:conv])

There are more parameters we specified here
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name Every layer could be given a name. When saving the model to disk and loading back, this is used as an identifier
to map to the correct layer. So if your layer contains learned parameters (a convolution layer contains learned
filters), you should give it a unique name.

n_filter Number of convolution filters.

kernel The size of each filter. This is specified in a tuple containing kernel width and kernel height, respectively.
In this case, we are defining a 5x5 square filter size.

bottoms An array of symbols specifying where to get data from. In this case, we are asking for a single data source
called :data. This is provided by the HDF5 data layer we just defined. By default, the HDF5 data layer tries
to find two dataset named data and label from the HDF5 file, and provide two stream of data called :data
and :label, respectively. You can change that by specifying the tops property for the HDF5 data layer if
needed.

tops This specify a list of names for the output of the convolution layer. In this case, we are only taking one stream
of input and after convolution, we output on stream of convolved data with the name :conv.

Another convolution layer and pooling layer are defined similarly, with more filters this time:

pool_layer = PoolingLayer(kernel=(2,2), stride=(2,2), bottoms=[:conv], tops=[:pool])
conv2_layer = ConvolutionLayer(name="conv2", n_filter=50, kernel=(5,5), bottoms=[:pool], tops=[:conv2])

Note the tops and bottoms define the computation or data dependency. After the convolution and pooling layers,
we add two fully connected layers. They are called InnerProductLayer because the computation is basically
inner products between the input and the layer weights. The layer weights are also learned, so we also give names to
the two layers:

fc1_layer = InnerProductLayer(name="ip1", output_dim=500, neuron=Neurons.ReLU(), bottoms=[:pool2], tops=[:ip1])
fc2_layer = InnerProductLayer(name="ip2", output_dim=10, bottoms=[:ip1], tops=[:ip2])

Everything should be self-evidence. The output_dim property of an inner product layer specify the dimension of
the output. Note the dimension of the input is automatically determined from the bottom data stream.

Note for the first inner product layer, we specifies a Rectified Learning Unit (ReLU) activation function via the
neuron property. An activation function could be added to almost all computation layers (e.g. convolution layer).
By default, no activation function, or the identity activation function is used. We don’t use activation function for the
last inner product layer, because that layer acts as a linear classifier.

This is the basic structure of LeNet. In order to train this network, we need to define a loss function. This is done by
adding a loss layer:

loss_layer = SoftmaxLossLayer(bottoms=[:ip2,:label])

Note this softmax loss layer takes as input :ip2, which is the output of the last inner product layer, and :label,
which comes directly from the HDF5 data layer. It will compute an averaged loss over each mini batch, which allows
us to initiate back propagation to update network parameters.

1.1.3 Setup Backend and Build Network

Now we have defined all the relevant layers. Let’s setup the computation backend and construct a network with those
layers. In this example, we will go with the simple pure Julia CPU backend first:

sys = System(CPUBackend())
init(sys)

The init function of a Mocha System will initialize the computation backend. With an initialized system, we could
go ahead and construct our network:

2 Chapter 1. Tutorials



Mocha Documentation, Release 0.0.1

common_layers = [conv_layer, pool_layer, conv2_layer, pool2_layer, fc1_layer, fc2_layer]
net = Net(sys, [data_layer, common_layers..., loss_layer])

A network is built by passing the constructor an initialized system, and a list of layers. Note we use common_layers
to collect a subset of the layers. We will explain this in a minute.

1.1.4 Setup Solver

We will use Stochastic Gradient Descent (SGD) to solve or train our deep network.

params = SolverParameters(max_iter=10000, regu_coef=0.0005, base_lr=0.01, momentum=0.9,
lr_policy=LRPolicy.Inv(0.0001, 0.75))

solver = SGD(params)

The behavior of the solver is specified in the following parameters

max_iter Max number of iterations the solver will run to train the network.

regu_coef Regularization coefficient. By default, both the convolution layer and the inner product layer have
L2 regularizers for their weights (and no regularization for bias). Those regularizations could be customized
for each layer individually. The parameter here is just a global scaling factor for all the local regularization
coefficients if any.

base_lr This is the base learning rate. Again this is a global scaling factor, and each layer could specify their own
local learning rate.

momentum The momentum used in SGD. See the Caffe document for rules of thumb for setting the learning rate and
momentum.

lr_policy The learning rate policy. In this example, we are using the Inv policy with gamma = 0.001 and power
= 0.75. This policy will gradually shrink the learning rate, by setting it to base_lr * (1 + gamma * iter)-power.

Now our solver is ready to go. But in order to give him a healthy working plan, we decided to allow him to have some
coffee breaks.

1.1.5 Coffee Breaks for the Solver

To be continued ... the author went to coffee break...

1.2 Indices and tables

• genindex

• modindex

• search
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