
Mocha Documentation
Release 0.1.1

pluskid

February 29, 2016

Contents

1 Tutorials 3

2 User’s Guide 21

3 Developer’s Guide 55

Bibliography 61

i

ii

Mocha Documentation, Release 0.1.1

Mocha is a Deep Learning framework for Julia.

Contents 1

https://github.com/pluskid/Mocha.jl
http://julialang.org/

Mocha Documentation, Release 0.1.1

2 Contents

CHAPTER 1

Tutorials

1.1 Training LeNet on MNIST

This tutorial goes through the code in examples/mnist to explain the basic usage of Mocha. We will use the
architecture known as [LeNet], which is a deep convolutional neural network known to work well on handwritten digit
classification tasks. More specifically, we will use Caffe’s modified architecture, by replacing the sigmoid activation
functions with Rectified Linear Unit (ReLU) activation functions.

1.1.1 Preparing the Data

MNIST is a handwritten digit recognition dataset containing 60,000 training examples and 10,000 test examples. Each
example is a 28x28 single channel grayscale image. The dataset can be downloaded in a binary format from Yann Le-
Cun’s website. We have created a script get-mnist.sh to download the dataset, and it calls mnist.convert.jl
to convert the binary dataset into a HDF5 file that Mocha can read.

When the conversion finishes, data/train.hdf5 and data/test.hdf5 will be generated.

1.1.2 Defining the Network Architecture

The LeNet consists of a convolution layer followed by a pooling layer, and then another convolution followed by a
pooling layer. After that, two densely connected layers are added. We don’t use a configuration file to define a network
architecture like Caffe, instead, the network definition is directly done in Julia. First of all, let’s import the Mocha
package.

using Mocha

Then we will define a data layer, which reads the HDF5 file and provides input for the network:

data_layer = HDF5DataLayer(name="train-data", source="data/train.txt",
batch_size=64, shuffle=true)

Note the source is a simple text file that contains a list of real data files (in this case data/train.hdf5). This
behavior is the same as in Caffe, and could be useful when your dataset contains a lot of files. The network processes
data in mini-batches, and we are using a batch size of 64 in this example. Larger mini-batches take more computational
time but give a lower variance estimate of the loss function/gradient at each iteration. We also enable random shuffling
of the data set to prevent structure in the ordering of input samples from influencing training.

Next we define a convolution layer in a similar way:

3

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Mocha Documentation, Release 0.1.1

conv_layer = ConvolutionLayer(name="conv1", n_filter=20, kernel=(5,5),
bottoms=[:data], tops=[:conv1])

There are several parameters specified here:

name Every layer can be given a name. When saving the model to disk and loading back, this is used as an identifier
to map to the correct layer. So if your layer contains learned parameters (a convolution layer contains learned
filters), you should give it a unique name. It is a good practice to give every layer a unique name to get more
informative debugging information when there are any potential issues.

n_filter Number of convolution filters.

kernel The size of each filter. This is specified in a tuple containing kernel width and kernel height, respectively.
In this case, we are defining a 5x5 square filter.

bottoms An array of symbols specifying where to get data from. In this case, we are asking for a single data source
called :data. This is provided by the HDF5 data layer we just defined. By default, the HDF5 data layer tries to
find two datasets named data and label from the HDF5 file, and provide two streams of data called :data
and :label, respectively. You can change that by specifying the tops property for the HDF5 data layer if
needed.

tops This specifies a list of names for the output of the convolution layer. In this case, we are only taking one stream
of input, and after convolution we output one stream of convolved data with the name :conv1.

Another convolution layer and pooling layer are defined similarly, this time with more filters:

pool_layer = PoolingLayer(name="pool1", kernel=(2,2), stride=(2,2),
bottoms=[:conv1], tops=[:pool1])

conv2_layer = ConvolutionLayer(name="conv2", n_filter=50, kernel=(5,5),
bottoms=[:pool1], tops=[:conv2])

pool2_layer = PoolingLayer(name="pool2", kernel=(2,2), stride=(2,2),
bottoms=[:conv2], tops=[:pool2])

Note how tops and bottoms define the computation or data dependency. After the convolution and pooling layers,
we add two fully connected layers. They are called InnerProductLayer because the computation is basically an
inner product between the input and the layer weights. The layer weights are also learned, so we also give names to
the two layers:

fc1_layer = InnerProductLayer(name="ip1", output_dim=500,
neuron=Neurons.ReLU(), bottoms=[:pool2], tops=[:ip1])

fc2_layer = InnerProductLayer(name="ip2", output_dim=10,
bottoms=[:ip1], tops=[:ip2])

Everything should be self-evident. The output_dim property of an inner product layer specifies the dimension of
the output. Note the dimension of the input is automatically determined from the bottom data stream.

For the first inner product layer we specify a Rectified Linear Unit (ReLU) activation function via the neuron prop-
erty. An activation function could be added to almost any computation layer. By default, no activation function, or the
identity activation function is used. We don’t use activation an function for the last inner product layer, because that
layer acts as a linear classifier. For more details, see Neurons (Activation Functions).

The output dimension of the last inner product layer is 10, which corresponds to the number of classes (digits 0~9) of
our problem.

This is the basic structure of LeNet. In order to train this network, we need to define a loss function. This is done by
adding a loss layer:

loss_layer = SoftmaxLossLayer(name="loss", bottoms=[:ip2,:label])

4 Chapter 1. Tutorials

Mocha Documentation, Release 0.1.1

Note this softmax loss layer takes as input :ip2, which is the output of the last inner product layer, and :label,
which comes directly from the HDF5 data layer. It will compute an averaged loss over each mini-batch, which allows
us to initiate back propagation to update network parameters.

1.1.3 Configuring the Backend and Building the Network

Now we have defined all the relevant layers. Let’s setup the computation backend and construct a network with those
layers. In this example, we will go with the simple pure Julia CPU backend first:

backend = CPUBackend()
init(backend)

The init function of a Mocha Backend will initialize the computation backend. With an initialized backend, we can
go ahead and construct our network:

common_layers = [conv_layer, pool_layer, conv2_layer, pool2_layer,
fc1_layer, fc2_layer]

net = Net("MNIST-train", backend, [data_layer, common_layers..., loss_layer])

A network is built by passing the constructor an initialized backend, and a list of layers. Note how we use
common_layers to collect a subset of the layers. This will be useful later when constructing a network to pro-
cess validation data.

1.1.4 Configuring the Solver

We will use Stochastic Gradient Descent (SGD) to solve/train our deep network.

exp_dir = "snapshots"
method = SGD()
params = make_solver_parameters(method, max_iter=10000, regu_coef=0.0005,

mom_policy=MomPolicy.Fixed(0.9),
lr_policy=LRPolicy.Inv(0.01, 0.0001, 0.75),
load_from=exp_dir)

solver = Solver(method, params)

The behavior of the solver is specified by the following parameters:

max_iter Max number of iterations the solver will run to train the network.

regu_coef Regularization coefficient. By default, both the convolution layer and the inner product layer have L2
regularizers for their weights (and no regularization for bias). Those regularizations could be customized for
each layer individually. The parameter here is a global scaling factor for all the local regularization coefficients.

mom_policy This specifies the momentum policy used during training. Here we are using a fixed momentum
policy of 0.9 throughout training. See the Caffe document for rules of thumb for setting the learning rate and
momentum.

lr_policy The learning rate policy. In this example, we are using the Inv policy with gamma = 0.001 and power
= 0.75. This policy will gradually shrink the learning rate, by setting it to base_lr * (1 + gamma * iter)-power.

load_from This can be a saved model file or a directory. For the latter case, the latest saved model snapshot will be
loaded automatically before the solver loop starts. We will see in a minute how to configure the solver to save
snapshots automatically during training.

This is useful to recover from a crash, to continue training with a larger max_iter or to perform fine tuning
on some pre-trained models.

1.1. Training LeNet on MNIST 5

http://caffe.berkeleyvision.org/tutorial/solver.html

Mocha Documentation, Release 0.1.1

1.1.5 Coffee Breaks for the Solver

Now our solver is ready to go. But in order to give it a healthy working plan, we provide it with some coffee breaks:

setup_coffee_lounge(solver, save_into="$exp_dir/statistics.hdf5", every_n_iter=1000)

This sets up the coffee lounge, which holds data reported during coffee breaks. Here we also specify a file to save
the information we accumulated in coffee breaks to disk. Depending on the coffee breaks, useful statistics such as
objective function values during training will be saved, and can be loaded later for plotting or inspecting.

add_coffee_break(solver, TrainingSummary(), every_n_iter=100)

First, we allow the solver to have a coffee break after every 100 iterations so that it can give us a brief summary of the
training process. By default TrainingSummary will print the loss function value on the last training mini-batch.

We also add a coffee break to save a snapshot of the trained network every 5,000 iterations:

add_coffee_break(solver, Snapshot(exp_dir), every_n_iter=5000)

Note that we are passing exp_dir to the constructor of the Snapshot coffee break so snapshots will be saved into
that directory. And according to our configuration of the solver above, the latest snapshots will be automatically loaded
by the solver if you run this script again.

In order to see whether we are really making progress or simply overfitting, we also wish to periodically see the
performance on a separate validation set. In this example, we simply use the test dataset as the validation set.

We will define a new network to perform the evaluation. The evaluation network will have exactly the same architec-
ture, except with a different data layer that reads from the validation dataset instead of the training set. We also do not
need the softmax loss layer as we will not train the validation network. Instead, we will add an accuracy layer on top,
which will compute the classification accuracy.

data_layer_test = HDF5DataLayer(name="test-data", source="data/test.txt", batch_size=100)
acc_layer = AccuracyLayer(name="test-accuracy", bottoms=[:ip2, :label])
test_net = Net("MNIST-test", backend, [data_layer_test, common_layers..., acc_layer])

Note how we re-use the common_layers variable defined a earlier to re-use the description of the network architec-
ture. By passing the same layer objects used to define the training net to the constructor of the validation net, Mocha
will automatically setup parameter sharing between the two networks. The two networks will look like this:

6 Chapter 1. Tutorials

Mocha Documentation, Release 0.1.1

HDF5
train conv1 pool1 conv2 pool2 ip1 ip2 softmax

loss

HDF5
test conv1 pool1 conv2 pool2 ip1 ip2 accuracy

shared
parameters

Now we are ready to add another coffee break to report the validation performance:

add_coffee_break(solver, ValidationPerformance(test_net), every_n_iter=1000)

Please note that we use a different batch size (100) in the validation network. During the coffee break, Mocha will run
exactly one epoch on the validation net (100 iterations in our case, as we have 10,000 samples in the MNIST test set),
and report the average classification accuracy. You do not need to specify the number of iterations here as the HDF5
data layer will report the epoch number as it goes through a full pass of the dataset.

1.1.6 Training

Without further ado, we can finally start the training process:

solve(solver, net)

destroy(net)
destroy(test_net)
shutdown(backend)

After training, we will shutdown the system to release all the allocated resources. Now you are ready run the script:

julia mnist.jl

As training proceeds, progress information will be reported. It takes about 10~20 seconds every 100 iterations, i.e.
about 7 iterations per second, on my machine, depending on the server load and many other factors.

14-Nov 11:56:13:INFO:root:001700 :: TRAIN obj-val = 0.43609169
14-Nov 11:56:36:INFO:root:001800 :: TRAIN obj-val = 0.21899594
14-Nov 11:56:58:INFO:root:001900 :: TRAIN obj-val = 0.19962406
14-Nov 11:57:21:INFO:root:002000 :: TRAIN obj-val = 0.06982464
14-Nov 11:57:40:INFO:root:
14-Nov 11:57:40:INFO:root:## Performance on Validation Set
14-Nov 11:57:40:INFO:root:---
14-Nov 11:57:40:INFO:root: Accuracy (avg over 10000) = 96.0500%

1.1. Training LeNet on MNIST 7

Mocha Documentation, Release 0.1.1

14-Nov 11:57:40:INFO:root:---
14-Nov 11:57:40:INFO:root:
14-Nov 11:58:01:INFO:root:002100 :: TRAIN obj-val = 0.18091436
14-Nov 11:58:21:INFO:root:002200 :: TRAIN obj-val = 0.14225903

The training could run faster by enabling the native extension for the CPU backend, or by using the CUDA backend if
CUDA compatible GPU devices are available. Please refer to Mocha Backends for how to use different backends.

Just to give you a feeling for the potential speed improvement, this is a sample log from running with the Native
Extension enabled CPU backend. It runs at about 20 iterations per second.

14-Nov 12:15:56:INFO:root:001700 :: TRAIN obj-val = 0.82937032
14-Nov 12:16:01:INFO:root:001800 :: TRAIN obj-val = 0.35497263
14-Nov 12:16:06:INFO:root:001900 :: TRAIN obj-val = 0.31351241
14-Nov 12:16:11:INFO:root:002000 :: TRAIN obj-val = 0.10048970
14-Nov 12:16:14:INFO:root:
14-Nov 12:16:14:INFO:root:## Performance on Validation Set
14-Nov 12:16:14:INFO:root:---
14-Nov 12:16:14:INFO:root: Accuracy (avg over 10000) = 94.5700%
14-Nov 12:16:14:INFO:root:---
14-Nov 12:16:14:INFO:root:
14-Nov 12:16:18:INFO:root:002100 :: TRAIN obj-val = 0.20689486
14-Nov 12:16:23:INFO:root:002200 :: TRAIN obj-val = 0.17757215

The following is a sample log from running with the CUDA backend. It runs at about 300 iterations per second.

14-Nov 12:57:07:INFO:root:001700 :: TRAIN obj-val = 0.33347249
14-Nov 12:57:07:INFO:root:001800 :: TRAIN obj-val = 0.16477060
14-Nov 12:57:07:INFO:root:001900 :: TRAIN obj-val = 0.18155883
14-Nov 12:57:08:INFO:root:002000 :: TRAIN obj-val = 0.06635486
14-Nov 12:57:08:INFO:root:
14-Nov 12:57:08:INFO:root:## Performance on Validation Set
14-Nov 12:57:08:INFO:root:---
14-Nov 12:57:08:INFO:root: Accuracy (avg over 10000) = 96.2200%
14-Nov 12:57:08:INFO:root:---
14-Nov 12:57:08:INFO:root:
14-Nov 12:57:08:INFO:root:002100 :: TRAIN obj-val = 0.20724633
14-Nov 12:57:08:INFO:root:002200 :: TRAIN obj-val = 0.14952177

The accuracy from two different training runs are different due to different random initializations. The objective
function values shown here are also slightly different from Caffe’s, as until recently, Mocha counts regularizers in the
forward stage and adds them into the objective functions. This behavior is removed in more recent versions of Mocha
to avoid unnecessary computations.

1.1.7 Using Saved Snapshots for Prediction

Often you want to use a network previously trained with Mocha to make individual predictions. Earlier during the
training process snapshots of the network state were saved every 5000 iterations, and these can be reloaded at a later
time. To do this we first need a network with the same shape and configuration as the one used for training, except
instead we supply a MemoryDataLayer instead of a HDF5DataLayer, and a SoftmaxLayer instead of a
SoftmaxLossLayer:

using Mocha
backend = CPUBackend()
init(backend)

mem_data = MemoryDataLayer(name="data", tops=[:data], batch_size=1,

8 Chapter 1. Tutorials

Mocha Documentation, Release 0.1.1

data=Array[zeros(Float32, 28, 28, 1, 1)])
softmax_layer = SoftmaxLayer(name="prob", tops=[:prob], bottoms=[:ip2])

define common_layers as earlier

run_net = Net("imagenet", backend, [mem_data, common_layers..., softmax_layer])

Note that common_layers has the same definition as above, and that we specifically pass a Float32 array to the
MemoryDataLayer so that it will match the Float32 data type used in the MNIST HDF5 training dataset. Next
we fill in this network with the learned parameters from the final training snapshot:

load_snapshot(run_net, "snapshots/snapshot-010000.jld")

Now we are ready to make predictions using our trained model. A simple way to accomplish this is to take the first
test data point and run it through the model. This is done by setting the data of the MemoryDataLayer to the first
test image and then using forward to execute the network. Note that the labels in the test data are indexed starting
with 0 not 1 so we adjust them before printing.

using HDF5
h5open("data/test.hdf5") do f

get_layer(run_net, "data").data[1][:,:,1,1] = f["data"][:,:,1,1]
println("Correct label index: ", Int64(f["label"][:,1][1]+1))

end

forward(run_net)
println()
println("Label probability vector:")
println(run_net.output_blobs[:prob].data)

This produces the output:

Correct label index: 5

Label probability vector:
Float32[5.870685e-6

0.00057068263
1.5419962e-5
8.387835e-7
0.99935246
5.5915066e-6
4.284061e-5
1.2896479e-6
4.2869314e-7
4.600691e-6]

1.2 Alex’s CIFAR-10 tutorial in Mocha

This example is converted from Caffe’s CIFAR-10 tutorials, which was originally built based on details from Alex
Krizhevsky’s cuda-convnet. In this example, we will demonstrate how to translate a network definition in Caffe to
Mocha, and train the network to roughly reproduce the test error rate of 18% (without data augmentation) as reported
in Alex Krizhevsky’s website.

The CIFAR-10 dataset is a labeled subset of the 80 Million Tiny Images dataset, containing 60,000 32x32 color images
in 10 categories. They are split into 50,000 training images and 10,000 test images. The number of samples are the
same as in the MNIST example. However, the images here are a bit larger and have 3 channels. As we will see soon,

1.2. Alex’s CIFAR-10 tutorial in Mocha 9

http://caffe.berkeleyvision.org/gathered/examples/cifar10.html
https://code.google.com/p/cuda-convnet2/
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://people.csail.mit.edu/torralba/tinyimages/

Mocha Documentation, Release 0.1.1

the network is also larger, with one extra convolution and pooling and two local response normalization layers. It is
recommended to read the MNIST tutorial first, as we will not repeat all details here.

1.2.1 Caffe’s Tutorial and Code

Caffe’s tutorial for CIFAR-10 can be found on their website. The code can be located in examples/cifar10 under
Caffe’s source tree. The code folder contains several different definitions of networks and solvers. The filenames
should be self-explanatory. The quick files corresponds to a smaller network without local response normalization
layers. These networks are documented in Caffe’s tutorial, according to which they obtain around 75% test accuracy.

We will be using the full models, which gives us around 81% test accuracy. Caffe’s definition of the full model can be
found in the file cifar10_full_train_test.prototxt. The training script is train_full.sh, which trains in 3 different stages
with solvers defined in

1. cifar10_full_solver.prototxt

2. cifar10_full_solver_lr1.prototxt

3. cifar10_full_solver_lr2.prototxt

respectively. This looks complicated. But if you compare the files, you will find that the three stages are basically
using the same solver configurations except with a ten-fold learning rate decrease after each stage.

1.2.2 Preparing the Data

Looking at the data layer of Caffe’s network definition, it uses a LevelDB database as a data source. The LevelDB
database is converted from the original binary files downloaded from the CIFAR-10 dataset’s website. Mocha does
not support the LevelDB database, so we will do the same thing: download the original binary files and convert them
into a Mocha-recognizable data format, in our case a HDF5 dataset. We have provided a Julia script convert.jl 1. You
can call get-cifar10.sh directly, which will automatically download the binary files, convert them to HDF5 and prepare
text index files that point to the HDF5 datasets.

Notice in Caffe’s data layer, a transform_param is specified with a mean_file. We could use Mocha’s data
transformers to do the same thing. But since we need to compute the data mean during data conversion, for simplicity,
we also perform mean subtraction when converting data to the HDF5 format. See convert.jl for details. Please refer to
the user’s guide for more details about the HDF5 data format that Mocha expects.

After converting the data, you should be ready to load the data in Mocha with HDF5DataLayer. We define two
layers for training data and test data separately, using the same batch size as in Caffe’s model definition:

data_tr_layer = HDF5DataLayer(name="data-train", source="data/train.txt", batch_size=100)
data_tt_layer = HDF5DataLayer(name="data-test", source="data/test.txt", batch_size=100)

In order to share the definition of common computation layers, Caffe uses the same file to define both the training and
test networks, and uses phases to include and exclude layers that are used only in the training or testing phase. Mocha
does not do this as the layers defined in Julia code are just Julia objects. We will simply construct training and test
nets with a different subsets of those Julia layer objects.

1.2.3 Computation and Loss Layers

Translating the computation layers should be straightforward. For example, the conv1 layer is defined in Caffe as

1 All the CIFAR-10 example related code in Mocha can be found in the examples/cifar10 directory under the source tree.

10 Chapter 1. Tutorials

http://caffe.berkeleyvision.org/gathered/examples/cifar10.html
https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full_train_test.prototxt
https://github.com/BVLC/caffe/blob/master/examples/cifar10/train_full.sh
https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full_solver.prototxt
https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full_solver_lr1.prototxt
https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full_solver_lr2.prototxt
http://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/pluskid/Mocha.jl/blob/master/examples/cifar10/convert.jl
https://github.com/pluskid/Mocha.jl/blob/master/examples/cifar10/get-cifar10.sh
https://github.com/pluskid/Mocha.jl/blob/master/examples/cifar10/convert.jl

Mocha Documentation, Release 0.1.1

layers {
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
stride: 1
weight_filler {

type: "gaussian"
std: 0.0001

}
bias_filler {

type: "constant"
}

}
}

This translates to Mocha as:

conv1_layer = ConvolutionLayer(name="conv1", n_filter=32, kernel=(5,5), pad=(2,2),
stride=(1,1), filter_init=GaussianInitializer(std=0.0001),
bottoms=[:data], tops=[:conv1])

Tip:

• The pad, kernel_size and stride parameters in Caffe means the same pad for both the width and height
dimension unless specified explicitly. In Mocha, we always explicitly use a 2-tuple to specify the parameters for
the two dimensions.

• A filler in Caffe corresponds to an initializer in Mocha.

• Mocha has a constant initializer (initialize to 0) for the bias by default, so we do not need to specify it explicitly.

The rest of the translated Mocha computation layers are listed here:

pool1_layer = PoolingLayer(name="pool1", kernel=(3,3), stride=(2,2), neuron=Neurons.ReLU(),
bottoms=[:conv1], tops=[:pool1])

norm1_layer = LRNLayer(name="norm1", kernel=3, scale=5e-5, power=0.75, mode=LRNMode.WithinChannel(),
bottoms=[:pool1], tops=[:norm1])

conv2_layer = ConvolutionLayer(name="conv2", n_filter=32, kernel=(5,5), pad=(2,2),
stride=(1,1), filter_init=GaussianInitializer(std=0.01),
bottoms=[:norm1], tops=[:conv2], neuron=Neurons.ReLU())

pool2_layer = PoolingLayer(name="pool2", kernel=(3,3), stride=(2,2), pooling=Pooling.Mean(),
bottoms=[:conv2], tops=[:pool2])

norm2_layer = LRNLayer(name="norm2", kernel=3, scale=5e-5, power=0.75, mode=LRNMode.WithinChannel(),
bottoms=[:pool2], tops=[:norm2])

conv3_layer = ConvolutionLayer(name="conv3", n_filter=64, kernel=(5,5), pad=(2,2),
stride=(1,1), filter_init=GaussianInitializer(std=0.01),
bottoms=[:norm2], tops=[:conv3], neuron=Neurons.ReLU())

pool3_layer = PoolingLayer(name="pool3", kernel=(3,3), stride=(2,2), pooling=Pooling.Mean(),
bottoms=[:conv3], tops=[:pool3])

ip1_layer = InnerProductLayer(name="ip1", output_dim=10, weight_init=GaussianInitializer(std=0.01),
weight_regu=L2Regu(250), bottoms=[:pool3], tops=[:ip1])

1.2. Alex’s CIFAR-10 tutorial in Mocha 11

Mocha Documentation, Release 0.1.1

You might have already noticed that Mocha does not have a ReLU layer. Instead, ReLU, like Sigmoid, are treated as
neurons or activation functions attached to layers.

1.2.4 Constructing the Network

In order to train the network, we need to define a loss layer. We also define an accuracy layer to be used in the test
network for us to see how our network performs on the test dataset during training. Translating directly from Caffe’s
definitions:

loss_layer = SoftmaxLossLayer(name="softmax", bottoms=[:ip1, :label])
acc_layer = AccuracyLayer(name="accuracy", bottoms=[:ip1, :label])

Next we collect the layers, and define a Mocha Net on the DefaultBackend. It is a typealias for GPUBackend if
CUDA is available and properly set up (see Mocha Backends), or uses CPUBackend as a backup even though it will
be much slower.

common_layers = [conv1_layer, pool1_layer, norm1_layer, conv2_layer, pool2_layer, norm2_layer,
conv3_layer, pool3_layer, ip1_layer]

backend = DefaultBackend()
init(backend)

net = Net("CIFAR10-train", backend, [data_tr_layer, common_layers..., loss_layer])

1.2.5 Configuring the Solver

The configuration for Caffe’s solver looks like this

reduce learning rate after 120 epochs (60000 iters) by factor 0f 10
then another factor of 10 after 10 more epochs (5000 iters)

The train/test net protocol buffer definition
net: "examples/cifar10/cifar10_full_train_test.prototxt"
test_iter specifies how many forward passes the test should carry out.
In the case of CIFAR10, we have test batch size 100 and 100 test iterations,
covering the full 10,000 testing images.
test_iter: 100
Carry out testing every 1000 training iterations.
test_interval: 1000
The base learning rate, momentum and the weight decay of the network.
base_lr: 0.001
momentum: 0.9
weight_decay: 0.004
The learning rate policy
lr_policy: "fixed"
Display every 200 iterations
display: 200
The maximum number of iterations
max_iter: 60000
snapshot intermediate results
snapshot: 10000
snapshot_prefix: "examples/cifar10/cifar10_full"
solver mode: CPU or GPU
solver_mode: GPU

12 Chapter 1. Tutorials

Mocha Documentation, Release 0.1.1

First of all, the learning rate is dropped by a factor of 10 twice 3. Caffe implements this by having three solver
configurations with different learning rates for each stage. We could do the same thing for Mocha, but Mocha has a
staged learning policy that makes this easier:

lr_policy = LRPolicy.Staged(
(60000, LRPolicy.Fixed(0.001)),
(5000, LRPolicy.Fixed(0.0001)),
(5000, LRPolicy.Fixed(0.00001)),

)
method = SGD()
solver_params = make_solver_parameters(method, max_iter=70000,

regu_coef=0.004, momentum=0.9, lr_policy=lr_policy,
load_from="snapshots")

solver = Solver(method, solver_params)

The other parameters like regularization coefficient and momentum are directly translated from Caffe’s solver con-
figuration. Progress reporting and automatic snapshots can equivalently be done in Mocha as coffee breaks for the
solver:

report training progress every 200 iterations
add_coffee_break(solver, TrainingSummary(), every_n_iter=200)

save snapshots every 5000 iterations
add_coffee_break(solver, Snapshot("snapshots"), every_n_iter=5000)

show performance on test data every 1000 iterations
test_net = Net("CIFAR10-test", backend, [data_tt_layer, common_layers..., acc_layer])
add_coffee_break(solver, ValidationPerformance(test_net), every_n_iter=1000)

1.2.6 Training

Now we can start training by calling solve(solver, net). Depending on different backends, the training speed
can vary. Here are some sample training logs from my own test. Note this is not a controlled comparison, just to get a
rough feeling.

Pure Julia on CPU

The training is quite slow on a pure Julia backend. It takes about 15 minutes to run every 200 iterations.

20-Nov 06:58:26:INFO:root:004600 :: TRAIN obj-val = 1.07695698
20-Nov 07:13:25:INFO:root:004800 :: TRAIN obj-val = 1.06556938
20-Nov 07:28:26:INFO:root:005000 :: TRAIN obj-val = 1.15177973
20-Nov 07:30:35:INFO:root:
20-Nov 07:30:35:INFO:root:## Performance on Validation Set
20-Nov 07:30:35:INFO:root:---
20-Nov 07:30:35:INFO:root: Accuracy (avg over 10000) = 62.8200%
20-Nov 07:30:35:INFO:root:---
20-Nov 07:30:35:INFO:root:
20-Nov 07:45:33:INFO:root:005200 :: TRAIN obj-val = 0.93760641
20-Nov 08:00:30:INFO:root:005400 :: TRAIN obj-val = 0.95650533
20-Nov 08:15:29:INFO:root:005600 :: TRAIN obj-val = 1.03291103
20-Nov 08:30:21:INFO:root:005800 :: TRAIN obj-val = 1.01833960
20-Nov 08:45:17:INFO:root:006000 :: TRAIN obj-val = 1.10167430
20-Nov 08:47:27:INFO:root:

3 Looking at the Caffe solver configuration, I happily realized that I am not the only person in the world who sometimes mis-type o as 0. :P

1.2. Alex’s CIFAR-10 tutorial in Mocha 13

Mocha Documentation, Release 0.1.1

20-Nov 08:47:27:INFO:root:## Performance on Validation Set
20-Nov 08:47:27:INFO:root:---
20-Nov 08:47:27:INFO:root: Accuracy (avg over 10000) = 64.7100%
20-Nov 08:47:27:INFO:root:---
20-Nov 08:47:27:INFO:root:
20-Nov 09:02:24:INFO:root:006200 :: TRAIN obj-val = 0.88323826

CPU with Native Extension

We enabled Mocha’s native extension, but disabled OpenMP by setting the OMP number of threads to 1:

ENV["OMP_NUM_THREADS"] = 1
blas_set_num_threads(1)

According to the log, it takes roughly 160 seconds to finish every 200 iterations.

20-Nov 09:29:10:INFO:root:000800 :: TRAIN obj-val = 1.46420457
20-Nov 09:31:48:INFO:root:001000 :: TRAIN obj-val = 1.63248945
20-Nov 09:32:22:INFO:root:
20-Nov 09:32:22:INFO:root:## Performance on Validation Set
20-Nov 09:32:22:INFO:root:---
20-Nov 09:32:22:INFO:root: Accuracy (avg over 10000) = 44.4300%
20-Nov 09:32:22:INFO:root:---
20-Nov 09:32:22:INFO:root:
20-Nov 09:35:00:INFO:root:001200 :: TRAIN obj-val = 1.33312901
20-Nov 09:37:38:INFO:root:001400 :: TRAIN obj-val = 1.40529397
20-Nov 09:40:16:INFO:root:001600 :: TRAIN obj-val = 1.26366557
20-Nov 09:42:54:INFO:root:001800 :: TRAIN obj-val = 1.29758151
20-Nov 09:45:32:INFO:root:002000 :: TRAIN obj-val = 1.40923050
20-Nov 09:46:06:INFO:root:
20-Nov 09:46:06:INFO:root:## Performance on Validation Set
20-Nov 09:46:06:INFO:root:---
20-Nov 09:46:06:INFO:root: Accuracy (avg over 10000) = 51.0400%
20-Nov 09:46:06:INFO:root:---
20-Nov 09:46:06:INFO:root:
20-Nov 09:48:44:INFO:root:002200 :: TRAIN obj-val = 1.24579735
20-Nov 09:51:22:INFO:root:002400 :: TRAIN obj-val = 1.22985339

We also tried to use multi-thread computing:

ENV["OMP_NUM_THREADS"] = 16
blas_set_num_threads(16)

By using 16 cores to compute, I got very slight improvement (which may well due to external factors as I did not
control the comparison environment at all), with roughly 150 seconds every 200 iterations. I did not try multi-thread
computing with less or more threads.

20-Nov 10:29:34:INFO:root:002400 :: TRAIN obj-val = 1.25820349
20-Nov 10:32:04:INFO:root:002600 :: TRAIN obj-val = 1.22480259
20-Nov 10:34:32:INFO:root:002800 :: TRAIN obj-val = 1.25739809
20-Nov 10:37:02:INFO:root:003000 :: TRAIN obj-val = 1.32196600
20-Nov 10:37:36:INFO:root:
20-Nov 10:37:36:INFO:root:## Performance on Validation Set
20-Nov 10:37:36:INFO:root:---
20-Nov 10:37:36:INFO:root: Accuracy (avg over 10000) = 56.4300%
20-Nov 10:37:36:INFO:root:---
20-Nov 10:37:36:INFO:root:
20-Nov 10:40:06:INFO:root:003200 :: TRAIN obj-val = 1.17503929

14 Chapter 1. Tutorials

Mocha Documentation, Release 0.1.1

20-Nov 10:42:40:INFO:root:003400 :: TRAIN obj-val = 1.13562913
20-Nov 10:45:09:INFO:root:003600 :: TRAIN obj-val = 1.17141657
20-Nov 10:47:40:INFO:root:003800 :: TRAIN obj-val = 1.20520208
20-Nov 10:50:12:INFO:root:004000 :: TRAIN obj-val = 1.24686298
20-Nov 10:50:47:INFO:root:
20-Nov 10:50:47:INFO:root:## Performance on Validation Set
20-Nov 10:50:47:INFO:root:---
20-Nov 10:50:47:INFO:root: Accuracy (avg over 10000) = 59.4500%
20-Nov 10:50:47:INFO:root:---
20-Nov 10:50:47:INFO:root:
20-Nov 10:53:16:INFO:root:004200 :: TRAIN obj-val = 1.11022978
20-Nov 10:55:49:INFO:root:004400 :: TRAIN obj-val = 1.04538457

CUDA with cuDNN

It takes only 5~6 seconds to finish every 200 iterations on the GPUBackend.

22-Nov 15:04:47:INFO:root:048600 :: TRAIN obj-val = 0.53777266
22-Nov 15:04:52:INFO:root:048800 :: TRAIN obj-val = 0.60837102
22-Nov 15:04:58:INFO:root:049000 :: TRAIN obj-val = 0.79333639
22-Nov 15:04:59:INFO:root:
22-Nov 15:04:59:INFO:root:## Performance on Validation Set
22-Nov 15:04:59:INFO:root:---
22-Nov 15:04:59:INFO:root: Accuracy (avg over 10000) = 76.5900%
22-Nov 15:04:59:INFO:root:---
22-Nov 15:04:59:INFO:root:
22-Nov 15:05:04:INFO:root:049200 :: TRAIN obj-val = 0.62640750
22-Nov 15:05:10:INFO:root:049400 :: TRAIN obj-val = 0.57287318
22-Nov 15:05:15:INFO:root:049600 :: TRAIN obj-val = 0.53166425
22-Nov 15:05:21:INFO:root:049800 :: TRAIN obj-val = 0.60679358
22-Nov 15:05:26:INFO:root:050000 :: TRAIN obj-val = 0.79003465
22-Nov 15:05:26:INFO:root:Saving snapshot to snapshot-050000.jld...
22-Nov 15:05:26:DEBUG:root:Saving parameters for layer conv1
22-Nov 15:05:26:DEBUG:root:Saving parameters for layer conv2
22-Nov 15:05:26:DEBUG:root:Saving parameters for layer conv3
22-Nov 15:05:26:DEBUG:root:Saving parameters for layer ip1
22-Nov 15:05:27:INFO:root:
22-Nov 15:05:27:INFO:root:## Performance on Validation Set
22-Nov 15:05:27:INFO:root:---
22-Nov 15:05:27:INFO:root: Accuracy (avg over 10000) = 76.5200%
22-Nov 15:05:27:INFO:root:---
22-Nov 15:05:27:INFO:root:
22-Nov 15:05:33:INFO:root:050200 :: TRAIN obj-val = 0.61519235
22-Nov 15:05:38:INFO:root:050400 :: TRAIN obj-val = 0.57314044

1.3 Image Classification with Pre-trained Model

This is a demo of using a CNN pre-trained on Imagenet to do image classification. The code is located in
examples/ijulia/ilsvrc12. You can view the rendered notebook example directly at nbviewer. Or alter-
natively, you can also start IJulia server locally by running

ipython notebook --profile julia

in this demo’s directory. The IJulia page will be automatically opened in your default browser.

1.3. Image Classification with Pre-trained Model 15

http://nbviewer.ipython.org/github/pluskid/Mocha.jl/blob/master/examples/ijulia/ilsvrc12/imagenet-classifier.ipynb

Mocha Documentation, Release 0.1.1

1.4 Pre-training with Stacked De-noising Auto-encoders

In this tutorial, we show how to use Mocha’s primitives to build stacked auto-encoders to do pre-training for a deep
neural network. We will work with the MNIST dataset. Please see the LeNet tutorial on MNIST on how to prepare
the HDF5 dataset.

Unsupervised pre-training is a way to initialize the weights when training deep neural networks. Initialization with pre-
training can have better convergence properties than simple random training, especially when the number of (labeled)
training points is not very large.

In the following two figures, we show the results generated from this tutorial. Specifically, the first figure shows the
softmax loss on the training set at different training iterations with and without pre-training initialization.

The second plot is similar, except that it shows the prediction accuracy of the trained model on the test set.

As we can see, faster convergence can be observed when we initialize with pre-training.

1.4.1 (Stacked) Denoising Auto-encoders

We provide a brief introduction to (stacked) denoising auto-encoders in this section. See also the deep learning tutorial
on Denoising Auto-encoders.

An auto-encoder takes an input x ∈ R𝑝, maps it to a latent representation (encoding) y ∈ R𝑞 , and then maps back to
the original space z ∈ R𝑝 (decoding / reconstruction). The mappings are typically linear maps (optionally) followed
by a element-wise nonlinearity:

y = 𝑠 (Wx+ b)

z = 𝑠
(︁
W̃y + b̃

)︁
Typically, we constrain the weights in the decoder to be the transpose of the weights in the encoder. This is referred to
as tied weights:

W̃ = W𝑇

Note that the biases b and b̃ are still different even when the weights are tied. An auto-encoder is trained by minimizing
the reconstruction error, typically with the square loss ℓ(x, z) = ‖x− z‖2.

A denoising auto-encoder is an auto-encoder with noise corruptions. More specifically, the encoder takes a corrupted
version x̃ of the original input. A typical way of corruption is randomly masking elements of x as zeros. Note the
reconstruction error is still measured against the original uncorrupted input x.

After training, we can take the weights and bias of the encoder layer in a (denoising) auto-encoder as an initialization
of an hidden (inner-product) layer of a DNN. When there are multiple hidden layers, layer-wise pre-training of stacked
(denoising) auto-encoders can be used to obtain initializations for all the hidden layers.

Layer-wise pre-training of stacked auto-encoders consists of the following steps:

1. Train the bottommost auto-encoder.

2. After training, remove the decoder layer, construct a new auto-encoder by taking the latent representation of the
previous auto-encoder as input.

3. Train the new auto-encoder. Note the weights and bias of the encoder from the previously trained auto-encoders
are fixed when training the newly constructed auto-encoder.

4. Repeat step 2 and 3 until enough layers are pre-trained.

Next we will show how to train denoising auto-encoders in Mocha and use them to initialize DNNs.

16 Chapter 1. Tutorials

http://deeplearning.net/tutorial/dA.html
http://deeplearning.net/tutorial/dA.html

Mocha Documentation, Release 0.1.1

1.4.2 Experiment Configuration

We will train a DNN with 3 hidden layers using sigmoid nonlinearities. All the parameters are listed below:

n_hidden_layer = 3
n_hidden_unit = 1000
neuron = Neurons.Sigmoid()
param_key_prefix = "ip-layer"
corruption_rates = [0.1,0.2,0.3]
pretrain_epoch = 15
finetune_epoch = 1000
batch_size = 100
momentum = 0.0
pretrain_lr = 0.001
finetune_lr = 0.1

param_keys = ["$param_key_prefix-$i" for i = 1:n_hidden_layer]

As we can see, we will do 15 epochs when pre-training for each layer, and do 1000 epochs of fine-tuning.

In Mocha, parameters (weights and bias) can be shared among different layers by specifying the param_key pa-
rameter when constructing layers. The param_keys variables defined above are unique identifiers for each of the
hidden layers. We will use those identifiers to indicate that the encoders in pre-training share parameters with the
hidden layers in DNN fine-tuning.

Here we define several basic layers that will be used in both pre-training and fine-tuning.

data_layer = HDF5DataLayer(name="train-data", source="data/train.txt",
batch_size=batch_size, shuffle=@windows ? false : true)

rename_layer = IdentityLayer(bottoms=[:data], tops=[:ip0])
hidden_layers = [

InnerProductLayer(name="ip-$i", param_key=param_keys[i],
output_dim=n_hidden_unit, neuron=neuron,
bottoms=[symbol("ip$(i-1)")], tops=[symbol("ip$i")])

for i = 1:n_hidden_layer
]

Note the rename_layer is defined to rename the :data blob to :ip0 blob. This makes it easier to define the
hidden layers in a unified manner.

1.4.3 Pre-training

We construct stacked denoising auto-encoders to perform pre-training for the weights and biases of the hidden layers
we just defined. We do layer-wise pre-training in a for loop. Several Mocha primitives are useful for building
auto-encoders:

• RandomMaskLayer: given a corruption ratio, this layer can randomly mask parts of the input blobs as zero.
We use this to create corruptions in denoising auto-encoders.

Note this is a in-place layer. In other words, it modifies the input directly. Recall that the reconstruction error
is computed against the uncorruppted input. So we need to use the following layer to create a copy of the input
before applying corruption.

• SplitLayer: split a blob into multiple copies.

• InnerProductLayer: the encoder layer is just an ordinary inner-product layer in DNNs.

• TiedInnerProductLayer: if we do not want tied weights, we could use another inner-product layer as the
decoder. Here we use a special layer to construct decoders with tied weights. The tied_param_key attribute
is used to identify the corresponding encoder layer we want to tie weights with.

1.4. Pre-training with Stacked De-noising Auto-encoders 17

Mocha Documentation, Release 0.1.1

• SquareLossLayer: used to compute reconstruction error.

We list the code for the layer definitions of the auto-encoders again:

ae_data_layer = SplitLayer(bottoms=[symbol("ip$(i-1)")], tops=[:orig_data, :corrupt_data])
corrupt_layer = RandomMaskLayer(ratio=corruption_rates[i], bottoms=[:corrupt_data])

encode_layer = copy(hidden_layers[i], bottoms=[:corrupt_data])
recon_layer = TiedInnerProductLayer(name="tied-ip-$i", tied_param_key=param_keys[i],

tops=[:recon], bottoms=[symbol("ip$i")])
recon_loss_layer = SquareLossLayer(bottoms=[:recon, :orig_data])

Note how the i-th auto-encoder is built on top of the output of the (i-1)-th hidden layer (blob name
symbol("ip$(i-1)")). We split the blob into :orig_data and :corrupt_data, and add corruption to
the :corrupt_data blob.

The encoder layer is basically the same as the i-th hidden layer. But it should take the corrupted blob as input, so use
the copy function to make a new layer based on the i-th hidden layer but change the bottoms property. The decoder
layer has tied weights with the encoder layer, and the square-loss layer compute the reconstruction error.

Recall that in layer-wise pre-training, we fix the parameters of the encoder layers that we already trained, and only
train the top-most encoder-decoder pair. In Mocha, we can freeze layers in a net to prevent their parameters being
modified during training. In this case, we freeze all layers except the encoder and the decoder layers:

da_layers = [data_layer, rename_layer, ae_data_layer, corrupt_layer,
hidden_layers[1:i-1]..., encode_layer, recon_layer, recon_loss_layer]

da = Net("Denoising-Autoencoder-$i", backend, da_layers)
println(da)

freeze all but the layers for auto-encoder
freeze_all!(da)
unfreeze!(da, "ip-$i", "tied-ip-$i")

Now we are ready to do the pre-training. In this example, we do not use regularization or momentum:

base_dir = "pretrain-$i"
method = SGD()
pretrain_params = make_solver_parameters(method, max_iter=div(pretrain_epoch*60000,batch_size),

regu_coef=0.0, mom_policy=MomPolicy.Fixed(momentum),
lr_policy=LRPolicy.Fixed(pretrain_lr), load_from=base_dir)

solver = Solver(method, pretrain_params)

add_coffee_break(solver, TrainingSummary(), every_n_iter=1000)
add_coffee_break(solver, Snapshot(base_dir), every_n_iter=3000)
solve(solver, da)

destroy(da)

1.4.4 Fine Tuning

After pre-training, we are now ready to do supervised fine tuning. This part is almost identical to the original MNIST
tutorial.

pred_layer = InnerProductLayer(name="pred", output_dim=10,
bottoms=[symbol("ip$n_hidden_layer")], tops=[:pred])

loss_layer = SoftmaxLossLayer(bottoms=[:pred, :label])

net = Net("MNIST-finetune", backend, [data_layer, rename_layer,

18 Chapter 1. Tutorials

Mocha Documentation, Release 0.1.1

hidden_layers..., pred_layer, loss_layer])

base_dir = "finetune"
params = make_solver_parameters(method, max_iter=div(finetune_epoch*60000,batch_size),

regu_coef=0.0, mom_policy=MomPolicy.Fixed(momentum),
lr_policy=LRPolicy.Fixed(finetune_lr), load_from=base_dir)

solver = Solver(method, params)

setup_coffee_lounge(solver, save_into="$base_dir/statistics.jld", every_n_iter=10000)

add_coffee_break(solver, TrainingSummary(), every_n_iter=1000)
add_coffee_break(solver, Snapshot(base_dir), every_n_iter=10000)

data_layer_test = HDF5DataLayer(name="test-data", source="data/test.txt", batch_size=100)
acc_layer = AccuracyLayer(name="test-accuracy", bottoms=[:pred, :label])
test_net = Net("MNIST-finetune-test", backend, [data_layer_test, rename_layer,

hidden_layers..., pred_layer, acc_layer])
add_coffee_break(solver, ValidationPerformance(test_net), every_n_iter=5000)

solve(solver, net)

destroy(net)
destroy(test_net)

Note that the key to allow the MNIST-finetune net to use the pre-trained weights as initialization of the hidden
layers is that we specify the same param_key property for the hidden layers and the encoder layers. Those param-
eters are stored in the registry of the backend. When a net is constructed, if a layer finds existing parameters with
its param_key, it will use the existing parameters, and ignore the parameter initializers specified by the user. Debug
information will be printed to the console:

31-Dec 02:37:46:DEBUG:root:InnerProductLayer(ip-1): sharing weights and bias
31-Dec 02:37:46:DEBUG:root:InnerProductLayer(ip-2): sharing weights and bias
31-Dec 02:37:46:DEBUG:root:InnerProductLayer(ip-3): sharing weights and bias

1.4.5 Comparison with Random Initialization

In order to see whether pre-training is helpful, we train the same DNN but with random initialization. The same layer
definitions are re-used. But note the highlighted line below: we reset the registry in the backend to clear the pre-trained
parameters before constructing the net:

registry_reset(backend)

net = Net("MNIST-rnd", backend, [data_layer, rename_layer,
hidden_layers..., pred_layer, loss_layer])

base_dir = "randinit"

params = copy(params, load_from=base_dir)
solver = Solver(method, params)

setup_coffee_lounge(solver, save_into="$base_dir/statistics.jld", every_n_iter=10000)

add_coffee_break(solver, TrainingSummary(), every_n_iter=1000)
add_coffee_break(solver, Snapshot(base_dir), every_n_iter=10000)
test_net = Net("MNIST-randinit-test", backend, [data_layer_test, rename_layer,

hidden_layers..., pred_layer, acc_layer])
add_coffee_break(solver, ValidationPerformance(test_net), every_n_iter=5000)

1.4. Pre-training with Stacked De-noising Auto-encoders 19

Mocha Documentation, Release 0.1.1

solve(solver, net)

destroy(net)
destroy(test_net)

We can check from the log that randomly initialized parameters are used in this case:

31-Dec 01:55:06:DEBUG:root:Init network MNIST-rnd
31-Dec 01:55:06:DEBUG:root:Init parameter weight for layer ip-1
31-Dec 01:55:06:DEBUG:root:Init parameter bias for layer ip-1
31-Dec 01:55:06:DEBUG:root:Init parameter weight for layer ip-2
31-Dec 01:55:06:DEBUG:root:Init parameter bias for layer ip-2
31-Dec 01:55:06:DEBUG:root:Init parameter weight for layer ip-3
31-Dec 01:55:06:DEBUG:root:Init parameter bias for layer ip-3
31-Dec 01:55:06:DEBUG:root:Init parameter weight for layer pred
31-Dec 01:55:06:DEBUG:root:Init parameter bias for layer pred

The plots shown at the beginning of this tutorial are generated from the saved statistics from the coffee lounges. If you
are interested in how those plots are generated, please refer to the plot-all.jl script in the code directory of this
tutorial.

20 Chapter 1. Tutorials

CHAPTER 2

User’s Guide

2.1 Networks

2.1.1 Overview

In deep learning, computations are abstracted into relatively isolated layers. The layers are connected together ac-
cording to a given architecture that describes a data flow. Starting with the data layer: it takes input from a dataset
or user input, does some data pre-processing, and then produces a stream of processed data. The output of the data
layer is connected to the input of some computation layer, which again produces a stream of computed output that
gets connected to the input of some upper layers. At the top of a network, there is typically a layer that produces the
network prediction or computes the loss function value according to provided ground-truth labels.

During training, the same data path, except in the reversed direction, is used to propagate the error back to each layer
using chain rules. Via back propagation, each layer can compute the gradients for its own parameters, and update the
parameters according to some optimization schemes. Again, the computation is abstracted into layers.

The abstraction and separation of layers from the architecture is important. The library implementation can focus on
each layer type independently, and does not need to worry about how those layers are going to be connected with each
other. On the other hand, the network designer can focus on the architecture, and does not need to worry about the
internal computations of layers. This enables us to compose layers almost arbitrarily to create very deep / complicated
networks. The network could be carrying out highly sophisticated computations when viewed as a whole, yet all the
complexities are nicely decomposed into manageable pieces.

Most of the illustrations for (deep) neural networks look like the following image stolen from Wikipedia’s page on
Artificial Neural Networks:

21

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network

Mocha Documentation, Release 0.1.1

Output

Hidden

Input

When writing Mocha, I found this kind of illustrations a bit confusing, as it does not align well with the abstract
concept of layers we just described. In our abstraction, the computation is done within each layer, and the network
architecture specifies the data path connections for the layers only. In the figure above, the “Input”, “Hidden”, and
“Output” labels are put on the nodes, suggesting the nodes are layers. However, the nodes do not computate anything,
instead, computations are specified by the arrows connecting these nodes.

I think the following kind of illustration is clearer, for the purpose of abstracting layers and architectures separately:

22 Chapter 2. User’s Guide

Mocha Documentation, Release 0.1.1

y1
1

x2
2

y2
3 x3

3

data inner product softmax

Each layer is now represented as a box that has inputs (denoted by 𝑥𝐿 for the 𝐿-th layer) and outputs (denoted by 𝑦𝐿).
Now the architecture specifies which layer’s outputs connect to which layer’s inputs (the dark lines in the figure). On
the other hand, the intra-layer connections, or computations (see dotted line in the figure), should be isolated from the
outside world.

Note: Unlike the intra-layer connections, the inter-layer connections are drawn as simple parallel lines, because they
are essentially a point-wise copying operation. Because all the computations are abstracted to be inside the layers,
there is no real computation in between them. Mathematically, this means 𝑥𝐿 = 𝑦𝐿−1. In actual implementation, data
copying is avoided via data sharing.

Of course, the choice is only a matter of taste, but as we will see, using the latter kind of illustration makes it much
easier to understand Mocha’s internal structure and end-user interface.

2.1.2 Network Architecture

Specifying a network architecture in Mocha means defining a set of layers, and connecting them. Taking the figure
above for example, we could define a data layer and an inner product layer

data_layer = HDF5DataLayer(name="data", source="data-list.txt", batch_size=64, tops=[:data])
ip_layer = InnerProductLayer(name="ip", output_dim=500, tops=[:ip], bottoms=[:data])

Note how the tops and bottoms properties give names to the output and input of the layer. Since the name for the
input of ip_layer matches the name for the output of data_layer, they will be connected as shown in the figure
above. The softmax layer could be defined similarly. Mocha will do a topological sort on the collection of layers and
automatically figure out the connection defined implicitly by the names of the inputs and outputs of each layer.

2.1.3 Layer Implementation

The layer is completely unaware of what happens in the outside world. Two important procedures need to be defined
to implement a layer:

• Feed-forward: given the inputs, compute the outputs. For example, for the inner product layer, it will compute
the outputs as 𝑦𝑖 =

∑︀
𝑗 𝑤𝑖𝑗𝑥𝑗 .

2.1. Networks 23

Mocha Documentation, Release 0.1.1

• Back-propagate: given the errors propagated from upper layers, compute the gradient of the layer parameters,
and propagate the error down to lower layers. Note this is described in very vague terms like errors. Depending
on the abstraction we choose here, these vague terms become a concrete meaning.

Specifically, back-propagation is used during network training, when an optimization algorithm wants to compute the
gradient of each parameter with respect to an objective function. Typically, the objective function is some loss function
that penalizes incorrect predictions given the ground-truth labels. Let’s call the objective function ℓ.

Now let’s switch to the viewpoint of an inner product layer: it needs to compute the gradients of the weights parameters
𝑤 with respect to ℓ. Of course, since we restrict the layer from accessing the outside world, it does not know what ℓ
is. But the gradients could be computed via chain rule

𝜕ℓ

𝜕𝑤𝑖𝑗
=

𝜕𝑦𝑖
𝜕𝑤𝑖𝑗

× 𝜕ℓ

𝜕𝑦𝑖

The red part can be computed within the layer, and the blue part are the so-called “errors propagated from the upper
layers”. It comes from the reversed data path as used in the feed-forward pass.

Now our inner product layer is ready to “propagate the errors down to lower layers”, precisely speaking, this means
computing

𝜕ℓ

𝜕𝑥𝑖
=
∑︁
𝑗

𝜕𝑦𝑗
𝜕𝑥𝑖

× 𝜕ℓ

𝜕𝑦𝑗

Again, this is decomposed into a part that can be computed internally and a part that comes from the “top”. Recall we
said the 𝐿-th layer’s inputs 𝑥𝐿

𝑖 are equal to the (𝐿− 1)-th layer’s outputs 𝑦𝐿−1
𝑖 . That means what we just computed

𝜕ℓ

𝜕𝑥𝐿
𝑖

=
𝜕ℓ

𝜕𝑦𝐿−1
𝑖

is exactly what the lower layer’s “errors propagated from upper layers”. By tracing the whole data path reversely, we
now help each layers compute the gradients of their own parameters internally. And this is called back-propagation.

2.1.4 Mocha Network Topology Tips

Shared Parameters

Consider a case where you want to construct two (or more) networks that share parameters. For example, during
training, you want to have a validation net that shares parameters with the training net, yet takes a different data layer
as input data stream and computes the accuracy on the validation set. In this case, simply using the same Layer
object when constructing both networks will be enough. See Training LeNet on MNIST for a concrete example.

If you want to have different layers in the same network to share parameters, you can just use the same param_key
property in the layers you want to share parameters. For example

layer_ip1 = InnerProductLayer(name="ip1", param_key="shared_ip",
output_dim=512, bottoms=[:input1], tops=[:output1])

layer_ip2 = InnerProductLayer(name="ip2", param_key="shared_ip",
output_dim=512, bottoms=[:input2], tops=[:output2])

If the two (or more) layers sharing parameters are of the same type (this is almost always true), an easier and more
efficient way to do the same thing is simply to define one layer that takes multiple inputs and produce multiple outputs.
For example, the snippet above is equivalent to

layer_ip = InnerProductLayer(name="ip", output_dim=512,
bottoms=[:input1,:input2], tops=[:outpu1,:outpu2])

Not all layers accept multiple input blobs. Some layers require all the input blobs to be the same shape, while others
can handle input blobs of completely different shapes. Please refer to the bottoms and tops properties of each
layer for the detailed behavior of each layer.

24 Chapter 2. User’s Guide

Mocha Documentation, Release 0.1.1

Shared Blobs

In the basic case, a data path connects each output blob to one input blob. In some cases, one output could be used
in multiple places. For example, in a test net, the output of the top representation layer will be used to compute
the predictions, and produce either loss or accuracy; meanwhile, one might want to use a HDF5OutputLayer to
store the representations as extracted features for future use. When the network is only doing forward operation, blob
sharing is not a problem: multiple layers could be declared to take the same blob as input.

When you want to do backward operation (i.e. back-propagation for training) on the network, things could get a little
bit complicated: If back-propagation does not go through the blob, than sharing is OK. For example, the output blob
of a HDF5DataLayer does not need back-propagation. The output blob of a ReshapeLayer sitting directly on
top of a data layer does not need back-propagation, either.

However, for a InnerProductLayer, even sitting directly on top of a data layer, its output blobs do need back-
propagation, because the inner product layer needs back-propagation to compute gradients with respect to its weights
and bias parameters. A TopologyError will be thrown when you try to do back-propagation on a network with
this kind of Topology.

In this case, a SplitLayer can be used to explicitly “split” a blob into two (or more) “copies”. The split layer can
handle back-propagation correctly. Moreover, the forward operation of a split layer is implemented with data sharing
instead of copying. Thus no extra cost is incurred during the forward pass.

2.1.5 Debugging

Mocha provides some utilities to show the structure of a network, which might be useful for debugging. First of all,
you can just call println on a network object, the sorted layers will be printed, with basic information including
blob names and shapes, etc. Alternatively, one can call net2dot to dump the network structure to a dot file, a script
used by GraphViz. For example, if you have GraphViz installed, the following command

open("net.dot", "w") do out net2dot(out, net) end
run(`dot -Tpng net.dot` |> "net.png")

will generate a visualization of the network architecture in net.png. The following is a visualization of the network
used in the MNIST example.

2.1. Networks 25

http://www.graphviz.org/

Mocha Documentation, Release 0.1.1

HDF5Data
train-data

top:

bot:

data (28x28x1x64) label (1x1x1x64)

Convolution
conv1

top:

bot:

conv (24x24x20x64)

data (28x28x1x64)

SoftmaxLoss
loss

top:

bot:

ip2 (10x64) label (1x1x1x64)

Pooling
pool1

top:

bot:

pool (12x12x20x64)

conv (24x24x20x64)

Convolution
conv2

top:

bot:

conv2 (8x8x50x64)

pool (12x12x20x64)

Pooling
pool2

top:

bot:

pool2 (4x4x50x64)

conv2 (8x8x50x64)

InnerProduct
ip1

(ReLU)

top:

bot:

ip1 (500x64)

pool2 (4x4x50x64)

InnerProduct
ip2

top:

bot:

ip2 (10x64)

ip1 (500x64)

26 Chapter 2. User’s Guide

Mocha Documentation, Release 0.1.1

2.2 Layers

2.2.1 Overview

There are four basic layer types in Mocha:

Data Layers Read data from source and feed them to top layers.

Computation Layers Take input stream from bottom layers, carry out computations and feed the computed results
to top layers.

Loss Layers Take computed results (and ground truth labels) from bottom layers, compute a scalar loss value. Loss
values from all the loss layers and regularizers in a net are added together to define the final loss function of the
net. The loss function is used to train the net parameters in back propagation.

Statistics Layers Take input from bottom layers and compute useful statistics like classification accuracy. Statistics
are accumulated throughout multiple iterations. reset_statistics can be used to explicitly reset the
statistics accumulation.

Utility Layers Other layers.

2.2.2 Data Layers

class AsyncHDF5DataLayer
Asynchronized HDF5 Data Layer. It has the same interface to HDF5DataLayer, except that

•The data IO is performed asynchronized with Julia coroutines. Noticeable speedups could typically be
observed for large problems.

•The data is read in chunks. This allows fast data shuffling of HDF5 dataset without using mmap.

The properties are the same as HDF5DataLayer, with one more extra property controlling chunking.

chunk_size
Default 2^20. The number of data points to read in each chunk. The data are read in chunks and cached
in memory for fast random access, especially when data shuffling is turned on. Larger chunk size typically
leads to better performance. Adjust this parameter according to the memory budget of your computing
node.

Tip:

•The cache only occupies host memory even when GPU backend is used for computation.

•There is no correspondence between this chunk size and the chunk size property defined in a HDF5
dataset. They do not need to be the same.

class HDF5DataLayer
Starting from v0.0.7, Mocha.jl contains an AsyncHDF5DataLayer, which is typically more preferable than
this one.

Loads data from a list of HDF5 files and feeds them to upper layers in mini batches. The layer will do automatic
round wrapping and report epochs after going over a full round of list data sources. Currently randomization is
not supported.

Each dataset in the HDF5 file should be a N-dimensional tensor. The last tensor dimension (the slowest changing
one) is treated as the number dimension, and split for mini-batch. For more details for ND-tensor blobs used in
Mocha, see Blob.

2.2. Layers 27

Mocha Documentation, Release 0.1.1

The numerical types of the HDF5 datasets should either be Float32 or Float64. Even for multi-class labels,
the integer class indicators should still be stored as floating point.

Note: For N class multi-class labels, the labels should be numerical values from 0 to N-1, even though Julia
use 1-based indexing (See SoftmaxLossLayer).

The HDF5 dataset format is compatible with Caffe. If you want to compare the results of Mocha to Caffe on the
same data, you could use Caffe’s HDF5 Data Layer to read from the same HDF5 files Mocha is using.

source
File name of the data source. The source should be a text file, in which each line specifies a file name to a
HDF5 file to load.

batch_size
The number of data samples in each mini batch.

tops
Default [:data, :label]. List of symbols, specifying the name of the blobs to feed to the top layers.
The names also correspond to the datasets to load from the HDF5 files specified in the data source.

transformers
Default []. List of data transformers. Each entry in the list should be a tuple of (name,
transformer), where name is a symbol of the corresponding output blob name, and transformer
is a data transformer that should be applied to the blob with the given name. Multiple transformers could
be given to the same blob, and they will be applied in the order provided here.

shuffle
Default false. When enabled, the data is randomly shuffled. Data shuffling is useful in training, but for
testing, there is no need to do shuffling. Shuffled access is a little bit slower, and it requires the HDF5
dataset to be mmappable. For example, the dataset can neither be chunked nor be compressed. Please refer
to the documention for HDF5.jl for more details.

Note: Current mmap in HDF5.jl does not work on Windows. See issue 89 on Github.

class MemoryDataLayer
Wrap an in-memory Julia Array as data source. Useful for testing.

tops
Default [:data, :label]. List of symbols, specifying the name of the blobs to produce.

batch_size
The number of data samples in each mini batch.

data
List of Julia Arrays. The count should be equal to the number of tops, where each Array acts as the data
source for each blob.

transformers
Default []. See transformers of HDF5DataLayer.

2.2.3 Computation Layers

class ArgmaxLayer
Compute the arg-max along the “channel” dimension. This layer is only used in the test network to produce
predicted classes. It has no ability to do back propagation.

28 Chapter 2. User’s Guide

https://github.com/timholy/HDF5.jl/blob/master/doc/hdf5.md#memory-mapping
https://github.com/timholy/HDF5.jl/issues/89

Mocha Documentation, Release 0.1.1

dim
Default -2 (penultimate). Specify which dimension to operate on.

tops
bottoms

Blob names for output and input. This layer can take multiple input blobs and produce the corresponding
number of output blobs. The shapes of the input blobs do not need to be the same.

class ChannelPoolingLayer
1D pooling over any specified dimension. This layer is called channel pooling layer because it was designed
to pool over the pre-defined channel dimension back when Mocha could only handle 4D tensors. For the new,
general ND-tensors the dimension to be pooled over can be freely specified by the user.

channel_dim
Default -2 (penultimate). Specifies which dimension to pool over.

kernel
Default 1, pooling kernel size.

stride
Default 1, stride for pooling.

pad
Default (0,0), a 2-tuple specifying padding in the front and the end.

pooling
Default Pooling.Max(). Specify the pooling function to use.

tops
bottoms

Blob names for output and input. This layer can take multiple input blobs and produce the corresponding
number of output blobs. The shapes of the input blobs do not need to be the same.

class ConvolutionLayer
Convolution in the spatial dimensions. For now convolution layers require the input blobs to be 4D tensors. For
a 4D input blob of the shape width-by-height-by-channels-by-num, The output blob shape is decided by
the kernel size (a.k.a. receptive field), the stride, the pad and the n_filter.

The kernel size specifies the geometry of a filter, also called a kernel or a local receptive field. Note that
implicitly, a filter also has a channel dimension that is the same size as the input image. As a filter moves across
the image by the specified stride and optionally pad when on the boundary of the input image, it produce a
real number by computing the inner-product between the filter weights and the local image patch at each spatial
position. The formula for the spatial dimension of the output blob is

width_out = div(width_in + 2*pad[1]-kernel[1], stride[1]) + 1
height_out = div(height_in + 2*pad[2]-kernel[2], stride[2]) + 1

The n_filter parameter specifies the number of such filters. The final output blob will have the shape
width_out-by-height_out-by-n_filter-by-num. An illustration of typical convolution (and pooling)
is shown below:

2.2. Layers 29

Mocha Documentation, Release 0.1.1

Image credit: http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/

Here the RF size is receptive field size, and maps (identified by different colors) correspond to different filters.

param_key
Default "". The unique identifier for layers with shared parameters. When empty, the layer name is used
as identifier instead.

kernel
Default (1,1), a 2-tuple specifying the width and height of the convolution filters.

stride
Default (1,1), a 2-tuple specifying the stride in the width and height dimensions, respectively.

pad
Default (0,0), a 2-tuple specifying the two-sided padding in the width and height dimensions, respectively.

n_filter
Default 1. Number of filters.

n_group
Default 1. Number of groups. This number should divide both n_filter and the number of channels
in the input blob. This parameter will divide the input blob along the channel dimension into n_group
groups. Each group will operate independently. Each group is assigned with n_filter / n_group
filters.

neuron
Default Neurons.Identity(), can be used to specify an activation function for the convolution out-
puts.

30 Chapter 2. User’s Guide

Mocha Documentation, Release 0.1.1

filter_init
Default XavierInitializer(). See initializer for the filters.

bias_init
Default ConstantInitializer(0). See initializer for the bias.

filter_regu
Default L2Regu(1), the regularizer for the filters.

bias_regu
Default NoRegu(), the regularizer for the bias.

filter_cons
Default NoCons(). Norm constraint for the filters.

bias_cons
Default NoCons(). Norm constraint for the bias. Typically no norm constraint should be applied to the
bias.

filter_lr
Default 1.0. The local learning rate for the filters.

bias_lr
Default 2.0. The local learning rate for the bias.

tops
bottoms

Blob names for output and input. This layer can take multiple input blobs and produce the corresponding
number of output blobs. The shapes of the input blobs must be the same.

class CropLayer
Do image cropping. This layer is primarily used only on top of data layers so backpropagation is currently not
implemented. Crop layer requires the input blobs to be 4D tensors.

crop_size
A (width, height) tuple of the size of the cropped image.

random_crop
Default false. When enabled, randomly place the cropping box instead of putting at the center. This is
useful to produce random perturbations of the input images during training.

random_mirror
Default false. When enabled, randomly (with probability 0.5) mirror the input images (flip the width
dimension).

tops
bottoms

Blob names for output and input. This layer can take multiple input blobs and produce the corresponding
number of output blobs. The shapes of the input blobs do not need to be the same as long as they are valid
(not smaller than the shape specified in crop_size).

class DropoutLayer
Dropout is typically used during training, and it has been demonstrated to be effective as a regularizer for
large scale networks. Dropout operates by randomly “turning off” some responses. Specifically, the forward
computation is

𝑦 =

{︃
𝑥

1−𝑝 𝑢 > 𝑝

0 𝑢 <= 𝑝

where 𝑢 is a random number uniformly distributed in [0,1], and 𝑝 is the ratio hyper-parameter. Note the
output is scaled by 1− 𝑝 such that E[𝑦] = 𝑥.

2.2. Layers 31

Mocha Documentation, Release 0.1.1

ratio
The probability 𝑝 of turning off a response. Can also be interpreted as the ratio of all the responses that are
turned off.

auto_scale
Default true. When turned off, does not scale the result by 1/(1− 𝑝). This option is used when building
RandomMaskLayer.

bottoms
The names of the input blobs dropout operates on. Note this is a in-place layer, so

1.there is no tops property. The output blobs will be the same as the input blobs.

2.It takes only one input blob.

class ElementWiseLayer
The Element-wise layer implements basic element-wise operations on inputs.

operation
Element-wise operation. Built-in operations are defined in module ElementWiseFunctors, including
Add, Subtract, Multiply and Divide.

tops
Output blob names, only one output blob is allowed.

bottoms
Input blob names, count must match the number of inputs operation takes.

class InnerProductLayer
Densely connected linear layer. The output is computed as

𝑦𝑖 =
∑︁
𝑗

𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖

where 𝑤𝑖𝑗 are the weights and 𝑏𝑖 are the biases.

param_key
Default "". The unique identifier for layers with shared parameters. When empty, the layer name is used
as identifier instead.

output_dim
Output dimension of the linear map. The input dimension is automatically decided via the inputs.

weight_init
Default XavierInitializer(). Specify how the weights 𝑤𝑖𝑗 should be initialized.

bias_init
Default ConstantInitializer(0), initializing the bias 𝑏𝑖 to 0.

weight_regu
Default L2Regu(1). Regularizer for the weights.

bias_regu
Default NoRegu(). Regularizer for the bias. Typically no regularization should be applied to the bias.

weight_cons
Default NoCons(). Norm constraint for the weights.

bias_cons
Default NoCons(). Norm constraint for the bias. Typically no norm constraint should be applied to the
bias.

weight_lr
Default 1.0. The local learning rate for the weights.

32 Chapter 2. User’s Guide

Mocha Documentation, Release 0.1.1

bias_lr
Default 2.0. The local learning rate for the bias.

neuron
Default Neurons.Identity(), an optional activation function for the output of this layer.

tops
bottoms

Blob names for output and input. This layer can take multiple input blobs and produce the corresponding
number of output blobs. The feature dimensions (the product of the first N-1 dimensions) of all input blobs
should be the same, but they could potentially have different batch sizes (the last dimension).

class LRNLayer
Local Response Normalization Layer. It performs normalization over local input regions via the following
mapping

𝑥 → 𝑦 =
𝑥(︁

𝛽 + (𝛼/𝑛)
∑︀

𝑥𝑗∈𝑁(𝑥) 𝑥
2
𝑗

)︁𝑝
Here 𝛽 is the shift, 𝛼 is the scale, 𝑝 is the power, and 𝑛 is the size of the local neighborhood. 𝑁(𝑥) denotes the
local neighborhood of 𝑥 of size 𝑛 (including 𝑥 itself). There are two types of local neighborhood:

•LRNMode.AcrossChannel(): The local neighborhood is a region of shape (1, 1, 𝑘, 1) centered at 𝑥.
In other words, the region extends across nearby channels (with zero padding if needed), but has no spatial
extent. Here 𝑘 is the kernel size, and 𝑛 = 𝑘 in this case.

•LRNMode.WithinChannel(): The local neighborhood is a region of shape (𝑘, 𝑘, 1, 1) centered at 𝑥.
In other words, the region extends spatially (in both the width and the channel dimension), again with zero
padding when needed. But it does not extend across different channels. In this case 𝑛 = 𝑘2.

When this mode is used, the input blobs should be 4D tensors for now, due to the requirements from the
underlying PoolingLayer.

kernel
Default 5, an integer indicating the kernel size. See 𝑘 in the descriptions above.

scale
Default 1.

shift
Default 1 (yes, 1, not 0).

power
Default 0.75.

mode
Default LRNMode.AcrossChannel().

tops
bottoms

Names for output and input blobs. Only one input and one output blob are allowed.

class PoolingLayer
2D pooling over the 2 image dimensions (width and height). For now the input blobs are required to be 4D
tensors.

kernel
Default (1,1), a 2-tuple of integers specifying pooling kernel width and height, respectively.

stride
Default (1,1), a 2-tuple of integers specifying pooling stride in the width and height dimensions, respec-
tively.

2.2. Layers 33

Mocha Documentation, Release 0.1.1

pad
Default (0,0), a 2-tuple of integers specifying the padding in the width and height dimensions, respectively.
Paddings are two-sided, so a pad of (1,0) will pad one pixel in both the left and the right boundary of an
image.

pooling
Default Pooling.Max(). Specify the pooling operation to use.

tops
bottoms

Blob names for output and input. This layer can take multiple input blobs and produce the corresponding
number of output blobs. The shapes of the input blobs do not need to be the same.

class PowerLayer
Power layer performs element-wise operations as

𝑦 = (𝑎𝑥+ 𝑏)𝑝

where 𝑎 is scale, 𝑏 is shift, and 𝑝 is power. During back propagation, the following element-wise deriva-
tives are computed:

𝜕𝑦

𝜕𝑥
= 𝑝𝑎(𝑎𝑥+ 𝑏)𝑝−1

Power layer is implemented separately instead of as an Element-wise layer for better performance because there
are some special cases of the Power layer that can be computed more efficiently.

power
Default 1

scale
Default 1

shift
Default 0

tops
bottoms

Blob names for output and input. This layer can take multiple input blobs and produce the corresponding
number of output blobs. The shapes of the input blobs do not need to be the same.

class RandomMaskLayer
Randomly mask subsets of input as zero. This is a wrapper over DropoutLayer, but

•This layer does not rescale the un-masked part to make the expectation the same as the expectation of the
original input.

•This layer can handle multiple input blobs while DropoutLayer accept only one input blob.

Note:

•This layer is a in-place layer. For example, if you want to use this to construct a denoising auto-encoder,
you should use a SplitLayer to make two copies of the input data: one is randomly masked (in-
place) as the input of the auto-encoder, and the other is directed to a SquareLoss layer that measure the
reconstruction error.

•Although typically not used, this layer is capable of doing back-propagation, powered by the underlying
DropoutLayer.

34 Chapter 2. User’s Guide

Mocha Documentation, Release 0.1.1

class SoftmaxLayer
Compute softmax over the “channel” dimension. The inputs 𝑥1, . . . , 𝑥𝐶 are mapped as

𝜎(𝑥1, . . . , 𝑥𝐶) = (𝜎1, . . . , 𝜎𝐶) =

(︃
𝑒𝑥1∑︀
𝑗 𝑒

𝑥𝑗
, . . . ,

𝑒𝑥𝐶∑︀
𝑗 𝑒

𝑥𝑗

)︃

To train a multi-class classification network with softmax probability output and multiclass logistic loss, use the
bundled SoftmaxLossLayer instead.

dim
Default -2 (penultimate). Specify the “channel” dim to operate along.

tops
bottoms

Blob names for output and input. This layer can take multiple input blobs and produce the corresponding
number of output blobs. The shapes of the input blobs do not need to be the same.

class TiedInnerProductLayer
Similar to InnerProductLayer but with weights tied to an existing InnerProductLayer. Used in
auto-encoders. During training, an auto-encoder defines the following mapping

x −→ h = W𝑇
1 x+ b1 −→ x̃ = W𝑇

2 h+ b2

Here x is input, h is the latent encoding, and x̃ is the decoded reconstruction of the input. Sometimes it is
desired to have tied weights for the encoder and decoder: W1 = W𝑇 . In this case, the encoder will be an
InnerProductLayer, and the decoder a TiedInnerProductLayer with tied weights to the encoder
layer.

Note the tied decoder layer does not perform learning for the weights. However, even a tied layer has indepen-
dent bias parameters that are learned independently.

tied_param_key
The param_key of the encoder layer that this layer wants to share tied weights with.

param_key
Default "". The unique identifier for layers with shared parameters. If empty, the layer name is used as
identifier instead.

Tip:

•param_key is used for TiedInnerProductLayer to share parameters. For example, the same
layer in a training net and in a validation / testing net use this mechanism to share parameters.

•tied_param_key is used to find the InnerProductLayer to enable tied weights. This should
be equal to the param_key property of the inner product layer you want to have tied weights with.

bias_init
Default ConstantInitializer(0). The initializer for the bias.

bias_regu
Default NoRegu(), the regularizer for the bias.

bias_cons
Default NoCons(). Norm constraint for the bias. Typically no norm constraint should be applied to the
bias.

bias_lr
Default 2.0. The local learning rate for the bias.

2.2. Layers 35

Mocha Documentation, Release 0.1.1

neuron
Default Neurons.Identity(), an optional activation function for the output of this layer.

tops
bottoms

Blob names for output and input. This layer can take multiple input blobs and produce the corresponding
number of output blobs. The feature dimensions (the product of the first N-1 dimensions) of all input blobs
should be the same, but they can potentially have different batch sizes (the last dimension).

class RandomNormalLayer

This is a source layer which outputs standard Gaussian random noise.

tops
List of symbols, specifying the names of the noise blobs to produce.

output_dims
List of integers giving the dimensions of the output noise blobs.

batch_sizes
List of integers the same length as tops, giving the number of vectors to output in each batch.

eltype
Default Float32.

2.2.4 Loss Layers

class HingeLossLayer
Compute the hinge loss for binary classification problems:

1

𝑁

𝑁∑︁
𝑖=1

max(1− y𝑖 · ŷ𝑖, 0)

Here 𝑁 is the batch-size, y𝑖 ∈ {−1, 1} is the ground-truth label of the 𝑖-th sample, and ŷ𝑖 is the corresponding
prediction.

weight
Default 1.0. Weight of this loss function. Could be useful when combining multiple loss functions in a
network.

bottoms
Should be a vector containing two symbols. The first one specifies the name for the prediction ŷ, and the
second one specifies the name for the ground-truth y.

class MultinomialLogisticLossLayer
The multinomial logistic loss is defined as ℓ = −𝑤𝑔 log(𝑥𝑔), where 𝑥1, . . . , 𝑥𝐶 are probabilities for each of the
𝐶 classes conditioned on the input data, 𝑔 is the corresponding ground-truth category, and 𝑤𝑔 is the weight for
the 𝑔-th class (default 1, see bellow).

If the conditional probability blob is of the shape (dim1, dim2, ..., dim_channel, ..., dimN),
then the ground-truth blob should be of the shape (dim1, dim2, ..., 1, ..., dimN). Here
dim_channel, historically called the “channel” dimension, is the user specified tensor dimension to compute
loss on. This general case allows to produce multiple labels for each sample. For the typical case where only one
(multi-class) label is produced for one sample, the conditional probability blob is the shape (dim_channel,
dim_num) and the ground-truth blob should be of the shape (1, dim_num).

The ground-truth should be a zero-based index in the range of 0, . . . , 𝐶 − 1.

36 Chapter 2. User’s Guide

Mocha Documentation, Release 0.1.1

bottoms
Should be a vector containing two symbols. The first one specifies the name for the conditional probability
input blob, and the second one specifies the name for the ground-truth input blob.

weight
Default 1.0. Weight of this loss function. Could be useful when combining multiple loss functions in a
network.

weights
This can be used to specify weights for different classes. The following values are allowed

•Empty array (default). This means each category should be equally weighted.

•A 1D vector of length channels. This defines weights for each category.

•An (N-1)D tensor of the shape of a data point. In other words, the same shape as the prediction except
that the last mini-batch dimension is removed. This is equivalent to the above case if the prediction is
a 2D tensor of the shape channels-by-mini-batch.

•An ND tensor of the same shape as the prediction blob. This allows us to fully specify different
weights for different data points in a mini-batch. See SoftlabelSoftmaxLossLayer.

dim
Default -2 (penultimate). Specify the dimension to operate on.

normalize
Indicating how weights should be normalized if given. The following values are allowed

•:local (default): Normalize the weights locally at each location (w,h), across the channels.

•:global: Normalize the weights globally.

•:no: Do not normalize the weights.

The weights normalization are done in a way that you get the same objective function when specifying
equal weights for each class as when you do not specify any weights. In other words, the total sum of the
weights are scaled to be equal to weights x height x channels. If you specify :no, it is your responsibility
to properly normalize the weights.

class SoftlabelSoftmaxLossLayer
Like the SoftmaxLossLayer, except that this deals with soft labels. For multiclass classification with 𝐾
categories, we call an integer value 𝑦 ∈ {0, . . . ,𝐾 − 1} a hard label. In contrast, a soft label is a vector on the
𝐾-dimensional simplex. In other words, a soft label specifies a probability distribution over all the 𝐾 categories,
while a hard label is a special case where all the probability masses concentrates on one single category. In this
case, this loss is basically computing the KL-divergence D(p||q), where p is the ground-truth softlabel, and q is
the predicted distribution.

dim
Default -2 (penultimate). Specify the dimension to operate on.

weight
Default 1.0. Weight of this loss function. Could be useful when combining multiple loss functions in a
network.

bottoms
Should be a vector containing two symbols. The first one specifies the name for the conditional probability
input blob, and the second one specifies the name for the ground-truth (soft labels) input blob.

class SoftmaxLossLayer
This is essentially a combination of MultinomialLogisticLossLayer and SoftmaxLayer. The given

2.2. Layers 37

Mocha Documentation, Release 0.1.1

predictions 𝑥1, . . . , 𝑥𝐶 for the 𝐶 classes are transformed with a softmax function

𝜎(𝑥1, . . . , 𝑥𝐶) = (𝜎1, . . . , 𝜎𝐶) =

(︃
𝑒𝑥1∑︀
𝑗 𝑒

𝑥𝑗
, . . . ,

𝑒𝑥𝐶∑︀
𝑗 𝑒

𝑥𝑗

)︃

which essentially turn the predictions into non-negative values with exponential function and then re-normalize
to make them look like probabilties. Then the transformed values are used to compute the multinomial logsitic
loss as

ℓ = −𝑤𝑔 log(𝜎𝑔)

Here 𝑔 is the ground-truth label, and 𝑤𝑔 is the weight for the 𝑔-th category. See the document of
MultinomialLogisticLossLayer for more details on what the weights mean and how to specify them.

The shapes of the inputs are the same as for the MultinomialLogisticLossLayer: the multi-class
predictions are assumed to be along the channel dimension.

The reason we provide a combined softmax loss layer instead of using one softmax layer and one multinomial
logistic layer is that the combined layer produces the back-propagation error in a more numerically robust way.

𝜕ℓ

𝜕𝑥𝑖
= 𝑤𝑔

(︃
𝑒𝑥𝑖∑︀
𝑗 𝑒

𝑥𝑗
− 𝛿𝑖𝑔

)︃
= 𝑤𝑔 (𝜎𝑖 − 𝛿𝑖𝑔)

Here 𝛿𝑖𝑔 is 1 if 𝑖 = 𝑔, and 0 otherwise.

bottoms
Should be a vector containing two symbols. The first one specifies the name for the conditional probability
input blob, and the second one specifies the name for the ground-truth input blob.

dim
Default -2 (penultimate). Specify the dimension to operate on. For a 4D vision tensor blob, the default
value (penultimate) translates to the 3rd tensor dimension, usually called the “channel” dimension.

weight
Default 1.0. Weight of this loss function. Could be useful when combining multiple loss functions in a
network.

weights
normalize

Properties for the underlying MultinomialLogisticLossLayer. See its documentation for details.

class SquareLossLayer
Compute the square loss for real-valued regression problems:

1

2𝑁

𝑁∑︁
𝑖=1

‖y𝑖 − ŷ𝑖‖2

Here 𝑁 is the batch-size, y𝑖 is the real-valued (vector or scalar) ground-truth label of the 𝑖-th sample, and ŷ𝑖 is
the corresponding prediction.

weight
Default 1.0. Weight of this loss function. Could be useful when combining multiple loss functions in a
network.

bottoms
Should be a vector containing two symbols. The first one specifies the name for the prediction ŷ, and the
second one specifies the name for the ground-truth y.

38 Chapter 2. User’s Guide

Mocha Documentation, Release 0.1.1

class BinaryCrossEntropyLossLayer
A simpler alternative to MultinomialLogisticLossLayer for the special case of binary classification.

− 1

𝑁

𝑁∑︁
𝑖=1

log(𝑝𝑖)𝑦𝑖 + log(1− 𝑝𝑖)(1− 𝑦𝑖)

Here 𝑁 is the batch-size, y𝑖 is the ground-truth label of the 𝑖-th sample, and :math:p_i is the corresponding
prediction.

weight
Default 1.0. Weight of this loss function. Could be useful when combining multiple loss functions in a
network.

bottoms
Should be a vector containing two symbols. The first one specifies the name for the prediction ŷ, and the
second one specifies the name for the binary ground-truth labels p.

class GaussianKLLossLayer

Given two inputs mu and sigma of the same size representing the means and standard deviations of a
diagonal multivariate Gaussian distribution, the loss is the Kullback-Leibler divergence from that to
the standard Gaussian of the same dimension.

Used in variational autoencoders, as in Kingma & Welling 2013, as a form of regularization.

𝐷𝐾𝐿(𝒩 (𝜇,diag(𝜎))‖𝒩 (0, I)) = −1

2

(︃
𝑁∑︁
𝑖=1

(𝜇2
𝑖 + 𝜎2

𝑖 − 2 log 𝜎𝑖)−𝑁

)︃

weight
Default 1.0. Weight of this loss function. Could be useful when combining multiple loss functions in a
network.

bottoms
Should be a vector containing two symbols. The first one specifies the name for the mean vector 𝜇, and
the second one the vector of standard deviations 𝜎.

2.2.5 Statistics Layers

class AccuracyLayer
Compute and accumulate multi-class classification accuracy. The accuracy is averaged over mini-batches. If the
spatial dimension is not singleton, i.e. there are multiple labels for each data instance, then the accuracy is also
averaged among the spatial dimension.

bottoms
The blob names for prediction and labels (in that order).

dim
Default -2 (penultimate). Specifies the dimension to operate on.

class BinaryAccuracyLayer
Compute and accumulate binary classification accuracy. The accuracy is averaged over mini-batches. Labels
can be either {0, 1} labels or {-1, +1} labels

bottoms
The blob names for prediction and labels (in that order).

2.2. Layers 39

http://arxiv.org/abs/1312.6114

Mocha Documentation, Release 0.1.1

2.2.6 Utility Layers

class ConcatLayer
Concatenates multiple blobs into a single blob along the specified dimension. Except in the concatenation
dimension, the shapes of the blobs being concatenated have to be the same.

dim
Default 3 (channel). The dimension to concatenate.

bottoms
Names of the blobs to be concatenated.

tops
Name of the concatenated output blob.

class MemoryOutputLayer
Takes some blobs in the network and collect their data during forward pass of the network as a list of julia
Array objects. Useful when doing in-memory testing for collecting the output. After running the forward pass
of the network, the outputs field of the corresponding layer state object will contain a vector of the same size
as the bottoms attribute. Each element of the vector is a list of tensors (julia Array objects), each tensor
corresponds to the output in a mini-batch.

bottoms
A list of names of the blobs in the network to store.

class HDF5OutputLayer
Takes some blobs in the network and writes them to a HDF5 file. Note that the target HDF5 file will be
overwritten when the network is first constructed, but later iterations will append data for each mini-batch. This
is useful for storing the final predictions or the intermediate representations (feature extraction) of a network.

filename
The path to the target HDF5 file.

force_overwrite
Default false. When the layer tries to create the target HDF5 file, if this attribute is enabled, it will
overwrite any existing file (with a warning printed). Otherwise, it will raise an exception and refuse to
overwrite the existing file.

bottoms
A list of names of the blobs in the network to store.

datasets
Default []. Should either be empty or a list of Symbol of the same length as bottoms. Each blob will
be stored as an HDF5 dataset in the target HDF5 file. If this attribute is given, the corresponding symbol
in this list is used as the dataset name instead of the original blob’s name.

class IdentityLayer
An Identity layer maps inputs to outputs without changing anything. This can be useful as a glue layer to rename
some blobs. There is no data-copying for this layer.

tops
bottoms

Blob names for output and input. This layer can take multiple input blobs and produce the corresponding
number of output blobs. The shapes of the input blobs do not need to be the same.

class Index2OnehotLayer
A utility layer that could convert category class into one-hot encoded vector. For example, for K classes, input j
is converted into a vector of size K, with all zeros, but the (j-1)-th entry 1.

40 Chapter 2. User’s Guide

Mocha Documentation, Release 0.1.1

dim
The dimension to operate on. The input must have size 1 on this dimension, i.e. size(input, dim)
== 1. And the value should be integers from 0 to (K-1).

n_class
Number of categories, i.e. K as described above.

tops
bottoms

Blob names for output and input. This layer can take multiple input blobs and produce the corresponding
number of output blobs. The shapes of the input blobs do not need to be the same. But they will be
operated on the same dimension, and the n_class for them are the same.

class ReshapeLayer
Reshapes a blob. Can be useful if, for example, you want to make the flat output from an
InnerProductLayer meaningful by assigning each dimension spatial information.

Internally, no data is copied. The total number of elements in the blob tensor after reshaping has to be the same
as the original blob tensor.

shape
Has to be an NTuple of Int specifying the new shape. Note that the new shape does not include the last
(mini-batch) dimension of a data blob. So a reshape layer cannot change the mini-batch size of a data blob.

tops
bottoms

Blob names for output and input. This layer can take multiple input blobs and produce the corresponding
number of output blobs. The shapes of the input blobs do not need to be the same. But the feature
dimensions (i.e. the product of the first 3 dimensions) have to be the same.

class SplitLayer
A Split layer produces identical copies of the input. The number of copies is determined by the length of
the tops property. During back propagation, derivatives from all the output copies are added together and
propagated down.

This layer is typically used as a helper to implement some more complicated layers.

bottoms
Input blob names, only one input blob is allowed.

tops
Output blob names, should be more than one output blobs.

no_copy
Default false. When true, no data is copied in the forward pass. In this case, all the output blobs share
data. When, for example, an in-place layer is used to modify one of the output blobs, all the other output
blobs will also change.

2.3 Neurons (Activation Functions)

Neurons can be attached to any layer. The neuron of each layer will affect the output in the forward pass and the
gradient in the backward pass automatically unless it is an identity neuron. Layers have an identity neuron by default
1.

1 This is actually not true: not all layers in Mocha support neurons. For example, data layers currently does not have neurons, but this feature
could be added by simply adding a neuron property to the data layer type. However, for some layer types like loss layers or accuracy layers, it does
not make much sense to have neurons.

2.3. Neurons (Activation Functions) 41

Mocha Documentation, Release 0.1.1

class Neurons.Identity
An activation function that does not change its input.

class Neurons.ReLU
Rectified Linear Unit. During the forward pass, it inhibits all inhibitions below some threshold 𝜖, typically 0. In
other words, it computes point-wise 𝑦 = max(𝜖, 𝑥). The point-wise derivative for ReLU is

𝑑𝑦

𝑑𝑥
=

{︃
1 𝑥 > 𝜖

0 𝑥 ≤ 𝜖

epsilon
Specifies the minimum threshold at which the neuron will truncate. Default 0.

Note: ReLU is actually not differentiable at 𝜖. But it has subdifferential [0, 1]. Any value in that interval can be
taken as a subderivative, and can be used in SGD if we generalize from gradient descent to subgradient descent.
In the implementation, we choose the subgradient at 𝑥 == 0 to be 0.

class Neurons.LReLU
Leaky Rectified Linear Unit. A Leaky ReLU can help fix the “dying ReLU” problem. ReLU’s can “die” if a
large enough gradient changes the weights such that the neuron never activates on new data.

𝑑𝑦

𝑑𝑥
=

{︃
1 𝑥 > 0

0.01 𝑥 ≤ 0

class Neurons.Sigmoid
Sigmoid is a smoothed step function that produces approximate 0 for negative input with large absolute values
and approximate 1 for large positive inputs. The point-wise formula is 𝑦 = 1/(1 + 𝑒−𝑥). The point-wise
derivative is

𝑑𝑦

𝑑𝑥
=

−𝑒−𝑥

(1 + 𝑒−𝑥)
2 = (1− 𝑦)𝑦

class Neurons.Tanh
Tanh is a transformed version of Sigmoid, that takes values in ±1 instead of the unit interval. input with large
absolute values and approximate 1 for large positive inputs. The point-wise formula is 𝑦 = (1 − 𝑒−2𝑥)/(1 +
𝑒−2𝑥). The point-wise derivative is

𝑑𝑦

𝑑𝑥
= 4𝑒2𝑥/(𝑒2𝑥 + 1)2 = (1− 𝑦2)

class Neurons.Exponential
The exponential function.

𝑦 = 𝑒𝑥𝑝(𝑥)

2.4 Initializers

Initializers provide init values for network parameter blobs. In Caffe, they are called Fillers.

class NullInitializer
An initializer that does nothing. To initialize with zeros, use a ConstantInitializer.

42 Chapter 2. User’s Guide

Mocha Documentation, Release 0.1.1

class ConstantInitializer
Set everything to a constant.

value
The value used to initialize a parameter blob. Typically this is set to 0.

class XavierInitializer
An initializer based on [BengioGlorot2010], but does not use the fan-out value. It fills the parameter blob by
randomly sampling uniform data from [−𝑆, 𝑆] where the scale 𝑆 =

√︀
3/𝐹in. Here 𝐹in is the fan-in: the number

of input nodes.

Heuristics are used to determine the fan-in: For a ND tensor parameter blob, the product of all the 1 to N-1
dimensions are considered as fan-in, while the last dimension is considered as fan-out.

class GaussianInitializer
Initialize each element in the parameter blob as independent and identically distributed Gaussian random vari-
ables.

mean
Default 0.

std
Default 1.

class OrthogonalInitializer
Initialize the parameter blob to be a random orthogonal matrix (i.e. 𝑊𝑇𝑊 = 𝐼), times a scalar gain factor.
Based on [Saxe2013].

gain
Default 1. Use

√
2 for layers with ReLU activations.

2.5 Regularizers

Regularizers add extra penalties or constraints for network parameters to restrict the model complexity. The corre-
sponding term used in Caffe is weight decay. Regularization and weight decay are equivalent in back-propagation. The
conceptual difference in the forward pass is that when treated as weight decay, they are not considered being part of
the objective function. However, in order to reduce the number of computations, Mocha also omits the forward com-
putation for regularizers by default. We choose to use the term regularization instead of weight decay just because it
is easier to understand when generalizing to sparse, group-sparse or even more complicated structural regularizations.

All regularizers have the property coefficient, corresponding to the regularization coefficient. During training, a
global regularization coefficient can also be specified (see user-guide/solver), which globally scales all local
regularization coefficients.

class NoRegu
Regularizer that imposes no regularization.

class L2Regu
L2 regularizer. The parameter blob 𝑊 is treated as a 1D vector. During the forward pass, the squared L2-norm
‖𝑊‖2 = ⟨𝑊,𝑊 ⟩ is computed, and 𝜆‖𝑊‖2 is added to the objective function, where 𝜆 is the regularization
coefficient. During the backward pass, 2𝜆𝑊 is added to the parameter gradient, enforcing a weight decay when
the solver moves the parameters towards the negative gradient direction.

Note: In Caffe, only 𝜆𝑊 is added as a weight decay in back propagation, which is equivalent to having a L2
regularizer with coefficient 0.5𝜆.

2.5. Regularizers 43

Mocha Documentation, Release 0.1.1

class L1Regu
L1 regularizer. The parameter blob 𝑊 is treated as a 1D vector. During the forward pass, the L1-norm

‖𝑊‖1 =
∑︁
𝑖

|𝑊𝑖|

is computed, and 𝜆‖𝑊‖1 is added to the objective function. During the backward pass, 𝜆sign(𝑊) is added to
the parameter gradient. The L1 regularizer has the property of encouraging sparsity in the parameters.

2.6 Norm Constraints

Norm constraints is a more “direct” way of restricting the model complexity by explicitly shrinking the parameters
every n iterations if the norm of the parameters exceeds a given threshold.

class NoCons
No constraint is applied.

class L2Cons
Constrain the Euclidean norm of parameters. Note that the threshold and shrinking are applied to each parame-
ter. Specifically, for the filters parameter of a convolution layer, the threshold is applied to each filter. Similarly,
for the weights parameter of an inner product layer, the threshold is applied to the weights corresponding to
each single output dimension of the inner product layer. When the norm of the parameter exceed the threshold,
it is scaled down to have exactly the norm specified in threshold.

See the MNIST with dropout code in the examples directory for an example of how L2Cons is used.

threshold
The norm threshold.

every_n_iter
Defautl 1. Indicates the frequency of norm constraint application.

2.7 Data Transformers

Data transformers apply transformations to data. Note that the transformations are limited to simple, in-place opera-
tions that do not change the shape of the data. If more complicated transformations like random projection or feature
mapping are needed, consider using a data transformation layer instead.

class DataTransformers.SubMean
Subtract mean from the data. The transformer does not have enough information to compute the data mean, thus
the mean should be computed in advance.

mean_blob
Default NullBlob(). A blob containing the mean.

mean_file
Default "". When mean_blob is a NullBlob, this can be used to specify a HDF5 file containing the
mean. The mean should be stored with the name mean in the HDF5 file.

class DataTransformers.Scale
Perform elementwise scaling of the data. This is useful, for example, when you want to scale the data to, say,
the range [0,1].

scale
Default 1.0. The scaling factor to apply.

44 Chapter 2. User’s Guide

Mocha Documentation, Release 0.1.1

2.8 Solvers

Mocha contains general purpose stochastic (sub-)gradient based solvers that can be used to train deep neural networks
as well as traditional shallow machine learning models.

A solver is constructed by specifying a dictionary of solver parameters that provide necessary configuration: both
general settings like stop conditions, and parameters specific to a particular algorithm such as momentum policy.

You then instantiate the algorithm that characterizes how the parameters are updated in each solver iteration. The
following is an example taken from the MNIST tutorial.

method = SGD()
params = make_solver_parameters(method, max_iter=10000, regu_coef=0.0005,

mom_policy=MomPolicy.Fixed(0.9),
lr_policy=LRPolicy.Inv(0.01, 0.0001, 0.75),
load_from=exp_dir)

solver = Solver(method, params)

Moreover, it is usually desired to do some short breaks during training iterations, for example, to print training progress
or to save a snapshot of the trained model to the disk. In Mocha, these are called coffee breaks for solvers.

2.8.1 General Solver Parameters

A instance of SolverParameters is just a Dictionary with Symbol keys. The
make_solver_parameters function helps to construct this, providing default values suitable for the solver
method.

Some parameters apply to all methods:

max_iter
Maximum number of iterations to run.

regu_coef
Global regularization coefficient. Used as a global scaling factor for the local regularization coeffi-
cient of each trainable parameter.

load_from
If specified, the solver will try to load a trained network before starting the solver loop. This param-
eter can be

•The path to a directory: Mocha will try to locate the latest saved JLD snapshot in this directory
and load it. A mocha snapshot contains a trained model and the solver state. So the solver loop
will continue from the saved state instead of re-starting from iteration 0.

•The path to a particular JLD snapshot file. The same as above except that the user controls
which particular snapshot to load.

•The path to a HDF5 model file. A HDF5 model file does not contain solver state information.
So the solver will start from iteration 0, but initialize the network from the model saved in
the HDF5 file. This can be used to fine-tune a trained (relatively) general model on a domain
specific (maybe smaller) dataset. You can also load HDF5 models exported from external deep
learning tools.

2.8.2 Solver Algorithms

The different solver methods are listed below, together with the SolverParameters arguments particular to them.

2.8. Solvers 45

Mocha Documentation, Release 0.1.1

class SGD
Stochastic Gradient Descent with momentum.

lr_policy
Policy for learning rate. Note that this is also a global scaling factor, as each trainable parameter also has
a local learning rate.

mom_policy
Policy for momentum.

class Nesterov
Stochastic Nesterov accelerated gradient method.

lr_policy
Policy for learning rate, as for SGD.

mom_policy
Policy for momentum, as for SGD.

class Adam
As described in Adam: A Method for Stochastic Optimization.

(N.B. The Adam solver sets effective learning rates for each parameter individually, so the layer local learning
rates are ignored in this case.)

lr_policy
Policy for learning rate, as for SGD. While the relative learning rates are set adaptively per parameter, the
learning rate still limits the maximum step for each parameter. Accordingly a fine-tuning schedule can be
useful, as for other methods.

beta1
Exponential decay factor for 1st order moment estimates, 0<=beta1<1, default 0.9

beta2
Exponential decay factor for 2nd order moment estimates, 0<=beta1<1, default 0.999

epsilon
Affects scaling of the parameter updates for numerical conditioning, default 1e-8

Learning Rate Policy

class LRPolicy.Fixed
A fixed learning rate.

class LRPolicy.Step
Provide the learning rate as base_lr * gamma floor(iter / stepsize). Here base_lr, gamma and stepsize are parameters
for the policy and iter is the training iteration.

class LRPolicy.Exp
Provide the learning rate as base_lr * gamma iter. Here base_lr and gamma are parameters for the policy and
iter is the training iteration.

class LRPolicy.Inv
Provide the learning rate as base_lr * (1 + gamma * iter) -power. Here base_lr, gamma and power are parameters
for the policy and iter is the training iteration.

class LRPolicy.Staged
This policy provides different learning rate policies at different stages. Stages are specified by number of training
iterations. See the CIFAR-10 tutorial for an example of staged learning rate policy.

46 Chapter 2. User’s Guide

http://arxiv.org/abs/1412.6980

Mocha Documentation, Release 0.1.1

class LRPolicy.DecayOnValidation
This policy starts with a base learning rate. Each time the performance on a validation set is computed, the
policy will scale the learning rate down by a given factor if the validation performance is poorer compared to
the one of the last snapshot. In this case it also asks the solver to load the latest saved snapshot and restart from
there.

Note in order for this policy to function properly, you need to set up both Snapshot coffee break
and ValidationPerformance coffee break. The policy works by registering a listener on the
ValidationPerformance coffee break. Whenever the performance is computed on a validation set, the
listener is notified, and it will compare the performance with the previous one on records. If the performance
decays, it will ask the solver to load the previously saved snapshot (saved by the Snapshot coffee break),
and then scale the learning rate down. Per default LRPolicy.DecayOnValidation considers a lower performance
statistic as better, however this can be changed by setting the optional argument higher_better to false.

A typical setup is to save one snapshot every epoch, and also check the performance on the validation set every
epoch. So if the performance decays, the learning rate is decreased, and the training will restart from the last
(good) epoch.

starts with lr=base_lr, and scale as lr=lr*lr_ratio
lr_policy=LRPolicy.DecayOnValidation(base_lr,"accuracy-accuracy",lr_ratio)

validation_performance = ValidationPerformance(test_net)
add_coffee_break(solver, validation_performance, every_n_epoch=1)

register the listener to get notified on performance validation
setup(params.lr_policy, validation_performance, solver)

Momentum Policy

class MomPolicy.Fixed
Provide fixed momentum.

class MomPolicy.Step
Provide the momentum as min(base_mom * gamma floor(iter / stepsize), max_mom). Here base_mom, gamma,
stepsize and max_mom are policy parameters and iter is the training iteration.

class MomPolicy.Linear
Provide the momentum as min(base_mom + floor(iter / stepsize) * gamma, max_mom). Here base_mom,
gamma, stepsize and max_mom are policy parameters and iter is the training iteration.

class MomPolicy.Staged
This policy provides different momentum policies at different stages. Stages are specified by number of training
iterations. See LRPolicy.Staged.

2.8.3 Solver Coffee Breaks

Training is a very computationally intensive loop of iterations. Being afraid that the solver might silently go crazy
under such heavy load, Mocha provides the solver opportunities to have a break periodically. During the breaks, the
solver can have a change of mood by, for example, talking to the outside world about its “mental status”. Here is a
snippet taken from the MNIST tutorial:

report training progress every 100 iterations
add_coffee_break(solver, TrainingSummary(), every_n_iter=100)

save snapshots every 5000 iterations
add_coffee_break(solver, Snapshot(exp_dir), every_n_iter=5000)

2.8. Solvers 47

Mocha Documentation, Release 0.1.1

We allow the solver to talk about its training progress every 100 iterations, and save the trained model to a snapshot
every 5000 iterations. Alternatively, coffee breaks can also be specified by every_n_epoch.

Coffee Lounge

Coffee lounge is the place for the solver to have coffee breaks. It provides a storage for a log of the coffee breaks. For
example, when the solver talks about its training progress, the objective function value at each coffee break will be
recorded. That data can be retrieved for inspection or plotting later.

The default coffee lounge keeps the storage in memory only. If you want to additionally save the recordings to disk,
you can set up the coffee lounge in the following way:

setup_coffee_lounge(solver, save_into="$exp_dir/statistics.jld",
every_n_iter=1000)

This means the recordings will be saved to the specified file every 1000 iterations. There is one extra keyword param-
eter for setup coffee lounge: file_exists, which should specify a symbol from the following options

:merge The default. Try to merge with the existing log file. This is useful if, for example, you are resuming from an
interrupted training process.

:overwrite Erase the existing log file if any.

:panic Exit with error if found the log file already exists.

The logs are stored as simple Julia dictionaries. See plot_statistics.jl in the tools directory for an example
of how to retrieve and visualize the saved information.

Built-in Coffee Breaks

class TrainingSummary
This is a coffee break in which the solver talks about the training summary. The training objective function
value at the current iteration is reported by default. You can also call the function with the following named
parameters in order to customize the output:

statistic_names

A vector of statistic names to print when summarizing the state, e.g. [:iter, :obj_val,
:learning_rate]. The available statistics will depend on the solver method in use.

Here are a few examples of usage:

#same as original functionality, shows iteration and obj_val by defualt
TrainingSummary()

#will only show objective function value
TrainingSummary(:iter)

#shows iteration, obj_val, learning_rate, and momentum
TrainingSummary(:iter, :obj_val, :learning_rate, :momentum)

Note that the training summary at iteration 0 shows the results before training starts. Also, any values that are
shown with this method will also be added to the lounge using the update_statistics() function.

class Snapshot
Automatically save solver and model snapshots to a given snapshot directory. The snapshot saved at iteration 0
corresponds to the init model (randomly initialized via initializers or loaded from existing model file).

48 Chapter 2. User’s Guide

Mocha Documentation, Release 0.1.1

class ValidationPerformance
Run an epoch over a validation set and report the performance (e.g. multiclass classification accuracy). You will
need to construct a validation network that shares parameters with the training network and provides access to
the validation dataset. See the MNIST tutorial for a concrete example.

2.9 Mocha Backends

A backend in Mocha is a component that carries out the actual numerical computation. Mocha is designed to support
multiple backends, and switching between different backends should be almost transparent to the rest of the world.

There is a DefaultBackend defined which is a typealias for one of the following backends, depending on avail-
ability. By default, GPUBackend is preferred if CUDA is available, falling back to the CPUBackend otherwise.

2.9.1 Pure Julia CPU Backend

A pure Julia CPU backend is implemented in Julia. This backend is reasonably fast by making heavy use of Julia’s
built-in BLAS matrix computation library and performance annotations to help the LLVM-based JIT compiler produce
high performance instructions.

A pure Julia CPU backend can be instantiated by calling the constructor CPUBackend(). Because there is no
external dependency, it should run on any platform that runs Julia.

If you have many cores in your computer, you can play with the number of threads used by Julia’s BLAS matrix
computation library by:

blas_set_num_threads(N)

Depending on the problem size and a lot of other factors, using larger N is not necessarily faster.

2.9.2 CPU Backend with Native Extension

Mocha comes with C++ implementations of some bottleneck computations for the CPU backend. In order to use the
native extension, you need to build the native code first (if it is not built automatically when installing the package).

Pkg.build("Mocha")

After successfully building the native extension, it can be enabled by setting the following environment variable. In
bash or zsh, execute

export MOCHA_USE_NATIVE_EXT=true

before running Mocha. You can also set the environment variable inside the Julia code:

ENV["MOCHA_USE_NATIVE_EXT"] = "true"

using Mocha

Note you need to set the environment variable before loading the Mocha module. Otherwise Mocha will not load the
native extension sub-module at all.

The native extension uses OpenMP to do parallel computation on Linux. The number of OpenMP threads used can be
controlled by the OMP_NUM_THREADS environment variable. Note that this variable is not specific to Mocha. If you
have other programs that use OpenMP, setting this environment variable in a shell will also affect the programs started
subsequently. If you want to restrict the effect to Mocha, simply set the variable in the Julia code:

2.9. Mocha Backends 49

http://julia.readthedocs.org/en/latest/manual/performance-tips/#performance-annotations
http://openmp.org/wp/

Mocha Documentation, Release 0.1.1

ENV["OMP_NUM_THREADS"] = 1

Note that setting it to 1 disables the OpenMP parallelization. Depending on the problem size and a lot of other factors,
using multi-thread OpenMP parallelization is not necessarily faster because of the overhead of multi-threads.

The parameter for the number of threads used by the BLAS library applies to the CPU backend with native extension,
too.

OpenMP on Mac OS X

When compiling the native extension on Mac OS X, you will get a warning that OpenMP is disabled. This is because
currently clang, the built-in compiler for OS X, does not officially support OpenMP yet. If you want to try OpenMP
on OS X, please refer to Clang-OMP and compile manually (see below).

Native Extension on Windows

The native extension does not support Windows because the automatic building script does not work on Windows.
However, the native code themselve does not use any OS specific features. If you have a compiler installed on
Windows, you can try to compile the native extension manually. However, I have not tested the native extension on
Windows personally.

Compile Native Extension Manually

The native code is located in the deps directory of Mocha. Use

Pkg.dir("Mocha")

to find out where Mocha is installed. You should compile it as a shared library (DLL on Windows). However,
currently the filename for the library is hard-coded to be libmochaext.so, with a .so extension, regardless of the
underlying OS.

2.9.3 CUDA Backend

GPUs have been shown to be very effective at training large scale deep neural networks. NVidia® recently released a
GPU accelerated library of primitives for deep neural networks called cuDNN. Mocha implementes a CUDA backend
by combining cuDNN, cuBLAS and plain CUDA kernels.

In order to use the CUDA backend, you need to have a CUDA-compatible GPU device. The CUDA toolkit needs to be
installed in order to compile the Mocha CUDA kernels. cuBLAS is included in the CUDA distribution. But cuDNN
needs to be installed separately. You can obtain cuDNN from Nvidia’s website by registering as a CUDA developer
for free.

Note:

• cuDNN requires CUDA 6.5 to run.

• Mocha v0.0.1 ~ v0.0.4 use cuDNN 6.5 R1, which is only available on Linux and Windows.

• Mocha v0.0.5 and higher uses cuDNN 6.5 v2, which is also available on Mac OS X.

• cuDNN 6.5 v2 is not backward compatible with cuDNN 6.5 R1.

50 Chapter 2. User’s Guide

http://clang-omp.github.io/
https://developer.nvidia.com/cuDNN
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cuDNN

Mocha Documentation, Release 0.1.1

Before using the CUDA backend, the Mocha kernels needs to be compiled. The kernels are located in
src/cuda/kernels. Please use Pkg.dir("Mocha") to find out where Mocha is installed on your system.
We have included a Makefile for convenience, but if you don’t have make installed, the command for compiling is as
simple as

nvcc -ptx kernels.cu

After compiling the kernels, you can now start to use the CUDA backend by setting the environment variable
MOCHA_USE_CUDA. For example:

ENV["MOCHA_USE_CUDA"] = "true"

using Mocha

backend = GPUBackend()
init(backend)

...

shutdown(backend)

Note that instead of instantiating a CPUBackend, you now construct a GPUBackend. The environment variable
needs to be set before loading Mocha. It is designed to use conditional loading so that the pure CPU backend can still
run on machines which don’t have a GPU device or don’t have the CUDA library installed. If you have multiple GPU
devices on one node, the environment variable MOCHA_GPU_DEVICE can be used to specify the device ID to use.
The default device ID is 0.

Recompiling Kernels

When you upgrade Mocha to a higher version, the source code for some CUDA kernel implementations might have
changed. Mocha will compile the timestamps for the compiled kernel and the source files. An error will be raised if
the compiled kernel file is found to be older than the kernel source files. Simply following the procedures above to
compile the kernel again will solve this problem.

2.10 Tools

2.10.1 Importing Trained Model from Caffe

Overview

Mocha provides a tool to help with importing Caffe’s trained models. Importing Caffe’s models consists of two steps:

1. Translating the network architecture definitions: this needs to be done manually. Typically for each layer
used in Caffe, there is an equivalent in Mocha, so translating should be relatively straightforward. See the
CIFAR-10 tutorial for an example of translating Caffe’s network definition. You need to make sure to use the
same name for the layers so that when importing the learned parameters, Mocha is able to find the correspon-
dences.

2. Importing the learned network parameters: this can be done automatically, and is the main topic of this
document.

2.10. Tools 51

Mocha Documentation, Release 0.1.1

Caffe uses a binary protocol buffer file to store trained models. Instead of parsing this complicated binary file, we
provide a tool to export the model parameters to the HDF5 format, and import the HDF5 file from Mocha. As a result,
you need to have Caffe installed to do the importing.

Exporting Caffe’s Snapshot to HDF5

Caffe’s snapshot files contain some extra information, but what we need are only the learned network parameters. The
strategy is to use Caffe’s built-in API to load their model snapshot, and then iterate all network layers in memory
to dump the layer parameters to a HDF5 file. In the tools directory of Mocha’s source root, you can find this in
dump_network_hdf5.cpp.

Put that file in Caffe’s tools directory, and re-compile Caffe. The tool should be built automatically, and the exe-
cutable file could typically be found in build/tools/dump_network_hdf5. Run the tool as follows:

build/tools/dump_network_hdf5 \
examples/cifar10/cifar10_full_train_test.prototxt \
examples/cifar10/cifar10_full_iter_70000.caffemodel \
cifar10.hdf5

where the arguments are Caffe’s network definition, Caffe’s model snapshot you want to export and the output HDF5
file, respectively.

Currently, in all the layers Mocha supports, only InnerProductLayer and ConvolutionLayer con-
tains trained parameters. When some other layers are needed, it should be straightforward to modify
dump_network_hdf5.cpp to include proper rules for exporting.

Importing the HDF5 Snapshot to Mocha

Mocha has a unified interface to import the HDF5 model we just exported. After constructing the network with the
same architecture as translated from Caffe, you can import the HDF5 file by calling

using HDF5
h5open("/path/to/cifar10.hdf5", "r") do h5
load_network(h5, net)

end

Actually, net does not need to be the exactly the same architecture. What it does is to try to find the parameters for
each layer in the HDF5 archive. So if the Mocha architecture contains fewer layers, it should be fine.

By default, if the parameters for a layer can not be found in the HDF5 archive, it will fail with an error. But you
can also change this behavior by passing false as the third argument, indicating not to panic if parameters are not
found in the archive. In this case, Mocha will use the associated initializer to initialize the parameters not found in the
archive.

Mocha’s HDF5 Snapshot Format

By using the same technique, you can import network parameters trained by other deep learning tools into Mocha, as
long as you can export them to HDF5 files. The HDF5 file that Mocha tries to import is very simple

• Each parameter (e.g. the filter of a convolution layer) is stored as a 4D tensor dataset in the HDF5 file.

• The dataset name for each parameter should be layer___param. For example, conv1___filter is for
the filter parameter of the convolution layer with the name conv1.

The HDF5 file format supports hierarchy. But it is rather complicated to manipulate hierarchies in some tools
(e.g. the HDF5 Lite library Caffe is using), so we decided to use a simple flat format.

52 Chapter 2. User’s Guide

http://www.hdfgroup.org/HDF5/doc/HL/RM_H5LT.html

Mocha Documentation, Release 0.1.1

• In Caffe, the bias parameter for a convolution layer and an inner product layer is optional. It is OK to omit
them on exporting if there is no bias. You will get a warning message when importing in Mocha. Mocha will
use the associated initializer (by default initializing to 0) to initialize the bias.

Exporting Caffe’s Mean File

Sometimes Caffe’s model includes a mean file, which is the mean data point computed over all the training data.
This information might be needed in data preprocessing. Of course we could compute the mean from the training data
manually. But if the training data is too large or is not easily obtainable, it might be easier to load Caffe’s pre-computed
mean file instead.

In the tools directory of Mocha’s source root, you can find dump_mean_file.cpp. Similar to exporting Caffe’s
model file, you can copy this file to Caffe’s tools directory and compile Caffe. After that, you can export Caffe’s
mean file:

build/tools/dump_mean_file \
data/ilsvrc12/imagenet_mean.binaryproto \
ilsvr12_mean.hdf5

The exported HDF5 file can then be loaded in Mocha using DataTransformers.SubMean.

2.10.2 Image Classifier

A simple image classifier interface is provided in tools/image-classifier.jl. It wraps a network and pro-
vides an easy-to-use interface that takes an arbitrary number of images and returns the classification results as both
class probabilities and symbolic class names. Please see Image Classification with Pre-trained Model for an example
on how to use this interface.

2.10. Tools 53

Mocha Documentation, Release 0.1.1

54 Chapter 2. User’s Guide

CHAPTER 3

Developer’s Guide

3.1 Blob

A blob is the fundamental data representation in Mocha. It is used for both data (e.g. mini-batch of data samples) and
parameters (e.g. filters of a convolution layer). Conceptually, a blob is an N-dimensional tensor.

For example, in vision, a data blob is usually a 4D-tensor. Following the vision (and Caffe) convention, the four
dimensions are called width, height, channels and num. The fastest changing dimension is width and slowest changing
dimension is num.

Note: The memory layout of a blob in Mocha is compatible with Caffe’s blob. So a blob (e.g. layer parameters)
in Mocha can be saved to HDF5 and loaded from Caffe without doing any dimension permutation, and vise versa.
However, since Julia uses the column-major convention for tensor and matrix data, and Caffe uses the row-major
convention, in Mocha API, the order of the four dimensions is width, height, channels, and num, while in Caffe API,
it is num, channels, height, width.

Each backend has its own blob implementation, as a subtype of Blob. For example, a blob in the CPU backend is a
shallow wrapper of a Julia Array object, while a blob in the GPU backend references to a piece of GPU memory.

3.1.1 Constructors and Destructors

A backend-dependent blob can be created with the following function:

make_blob(backend, data_type, dims)
dims is an NTuple, specifying the dimensions of the blob to be created. Currently data_type should be
either Float32 or Float64.

Several helper functions are also provided:

make_blob(backend, data_type, dims...)
Spell out the dimensions explicitly.

make_blob(backend, array)
array is a Julia AbstractArray. This creates a blob with the same data type and shape as array and
initializes the blob contents with array.

make_zero_blob(backend, data_type, dims)
Create a blob and initialize it with zeros.

55

Mocha Documentation, Release 0.1.1

reshape_blob(backend, blob, new_dims)
Create a reference to an existing blob with a possiblely different shape. The behavior is the same as Julia’s
reshape function on an array: the new blob shares data with the existing one.

destroy(blob)
Release the resources of a blob.

Note: The resources need to be released explicitly. A Julia blob object being GC-ed does not release the underlying
resource automatically.

3.1.2 Accessing Properties of a Blob

The blob implements a simple API similar to a Julia array:

eltype(blob)
Get the element type of the blob.

ndims(blob)
Get the tensor dimension of the blob. The same as length(size(blob)).

size(blob)
Get the shape of the blob. The return value is an NTuple.

size(blob, dim)
Get the size along a particular dimension. dim can be negative. For example, size(blob, -1) is the same
as size(blob)[end]. For convenience, if dim exceeds ndims(blob), the function returns 1 instead of
raising an error.

length(blob)
Get the total number of elements in a blob.

get_width(blob)
The same as size(blob, 1).

get_height(blob)
The same as size(blob, 2).

get_num(blob)
The same as size(blob, -1).

get_fea_size(blob)
The the feature size in a blob, which is the same as prod(size(blob)[1:end-1]).

The wrapper get_chann was removed when Mocha upgraded from 4D-tensors to general ND-tensors, because the
channel dimension is usually ambiguous for general ND-tensors.

3.1.3 Accessing Data of a Blob

Because accessing GPU memory is costly, a blob does not have an interface to do element-wise accessing. The data
can be either manipulated in a backend-dependent manner, relying on the underlying implementation details, or in a
backend-independent way by copying the contents from and to a Julia array.

copy!(dst, src)
Copy the contents of src to dst. src and dst can be either a blob or a Julia array.

The following utilities can be used to initialize the contents of a blob

56 Chapter 3. Developer’s Guide

Mocha Documentation, Release 0.1.1

fill!(blob, value)
Fill every element of blob with value.

erase!(blob)
Fill blob with zeros. Depending on the implementation, erase!(blob) might be more efficient than
fill!(blob, 0).

3.2 Layer

A layer in Mocha is an isolated computation component that (optionally) takes some input blobs and (optionally)
produces some output blobs. See Networks for an overview of the abstraction of layer and network in Mocha. Imple-
menting a layer in Mocha means

1. Characterizing the layer (e.g. does this layer define a loss function?) so that the network topology engine knows
how to properly glue the layers together to build a network.

2. Implementing the computation of the layer, either in a backend-independent way, or separately for each backend.

3.2.1 Defining a Layer

A layer, like many other computational components in Mocha, consists of two parts:

• A layer configuration, a subtype of Layer.

• A layer state, a subtype of LayerState.

Layer defines how a layer should be constructed and it should behave, while LayerState is the realization of a
layer which actually holds the data blobs.

Mocha has a helper macro @defstruct to define a Layer subtype. For example

@defstruct PoolingLayer Layer (
name :: AbstractString = "pooling",
(bottoms :: Vector{Symbol} = Symbol[], length(bottoms) > 0),
(tops :: Vector{Symbol} = Symbol[], length(tops) == length(bottoms)),
(kernel :: NTuple{2, Int} = (1,1), all([kernel...] .> 0)),
(stride :: NTuple{2, Int} = (1,1), all([stride...] .> 0)),
(pad :: NTuple{2, Int} = (0,0), all([pad...] .>= 0)),
pooling :: PoolingFunction = Pooling.Max(),
neuron :: ActivationFunction = Neurons.Identity(),

)

@defstruct can be used to define a general immutable struct. The first parameter is the struct name, the second
parameter is the super-type and then a list of struct fields follows. Each field requires a name, a type and a default
value. Optionally, an expression can be added to verify the user-supplied value meets the requirements.

This macro will automatically define a constructor with keyword arguments for each field. This makes the interface
easier to use for the end-user.

Each layer needs to have a field name. When the layer produce output blobs, it has to have a property tops, allowing
the user to specify a list of names for the output blobs the layer is producing. If the layer takes any number of blobs
as input, it should also have a property bottoms for the user to specify the names for the input blobs. Mocha will
use the information specified in tops and bottoms to wire the blobs in a proper data path for network forward and
backward iterations.

A subtype of LayerState should be defined for each layer, correspondingly. For example

3.2. Layer 57

Mocha Documentation, Release 0.1.1

type PoolingLayerState <: LayerState
layer :: PoolingLayer
blobs :: Vector{Blob}
blobs_diff :: Vector{Blob}

etc :: Any
end

A layer state should have a field layer referencing to the corresponding Layer object. If the layer produce output
blobs, the state should have a field called blobs, and the layer will write output into blobs during each forward itera-
tion. If the layer needs back-propagation from the upper layers, the state should also have a field called blobs_diff.
Mocha will pass the blobs in blobs_diff to the function computing backward iteration in the corresponding upper
layer. The back-propagated gradients will be written into blobs_diff by the upper layer, and the layer can make
use of this when computing the backward iteration.

Other fields and/or behaviors are required depending on the layer type (see below).

3.2.2 Characterizing a Layer

A layer is characterized by applying the macro @characterize_layer to the defined subtype of Layer. The
default characterizations are given by

@characterize_layer(Layer,
is_source => false, # data layer, takes no bottom blobs
is_sink => false, # top layer, produces no top blobs (loss, accuracy, etc.)
has_param => false, # contains trainable parameters
has_neuron => false, # has a neuron
can_do_bp => false, # can do back-propagation
is_inplace => false, # does inplace computation, does not have own top blobs
has_loss => false, # produces a loss
has_stats => false, # produces statistics

)

Characterizing a layer can be omitted if all the behaviors are consists with the default specifications. The charac-
terizations should be self-explanatory by the name and comments above. Some characterizations come with extra
requirements:

is_source The layer will be used as a source layer of a network. Thus it should take no input blob and the Layer
object should have no bottoms property.

is_sink The layer will be used as a sink layer of a network. Thus it should produce no output blob, and the Layer
object should have no tops property.

has_param The layer has trainable parameters. The LayerState object should have a parameters field,
containing a list of Parameter objects.

has_neuron The Layer object should have a property called neuron of type ActivationFunction.

can_do_bp Should be true if the layer has the ability to do back propagation.

is_inplace An inplace Layer object should have no tops property because the output blobs are the same as the
input blobs.

has_loss The LayerState object should have a loss field.

has_stats The layer computes statistics (e.g. accuracy). The statistics should be accumulated across multiple
mini-batches, until the user explicit reset the statistics. The following functions should be implemented for the
layer

58 Chapter 3. Developer’s Guide

Mocha Documentation, Release 0.1.1

dump_statistics(storage, layer_state, show)
storage is a data storage (typically a CoffeeLounge object) that is used to dump statistics into, via
the function update_statistics(storage, key, value).

show is a boolean value, when true, indicating that a summary of the statistics should also be printed to
stdout.

reset_statistics(layer_state)
Reset the statistics.

3.2.3 Layer Computation API

The life cycle of a layer is

1. The user defines a Layer

2. The user uses Layers to construct a Net. The Net will call setup_layer on each Layer to construct the
corresponding LayerState.

3. During training, the solver use a loop to call the forward and backward functions of the Net. The Net will
then call forward and backward of each layer in a proper order.

4. The user destroys the Net, which will call the shutdown function of each layer.

setup_layer(backend, layer, inputs, diffs)
Construct a corresponding LayerState object given a Layer object. inputs is a list of blobs, corre-
sponding to the blobs specified by the bottoms property of the Layer object. If the Layer does not have a
bottoms property, then it will be an empty list.

diffs is a list of blobs. Each blob in diffs corresponds to a blob in inputs. When computing back
propagation, the back-propagated gradients for each input blob should be written into the corresponding one in
diffs. Blobs in inputs and diffs are taken from blobs and blobs_diff of the LayerState objects
of lower layers.

diffs is guaranteed to be a list of blobs of the same length as inputs. However, when some input blobs do
not need back-propagated gradients, the corresponding blob in diffs will be a NullBlob.

This function should set up its own blobs and blobs_diffs (if any), matching the shape of its input blobs.

forward(backend, layer_state, inputs)
Do forward computing. It is guaranteed that the blobs in inputs are already computed by the lower layers.
The output blobs (if any) should be written into the blobs in the blobs field of the layer state.

backward(backend, layer_state, inputs, diffs)
Do backward computing. It is guaranteed that the back-propagated gradients with respect to all the output blobs
for this layer are already computed and written into the blobs in the blobs_diff field of the layer state. This
function should compute the gradients with respect to its parameters (if any). It is also responsible to compute
the back-propagated gradients and write them into the blobs in diffs. If a blob in diffs is a NullBlob,
computation for the back-propagated gradients for that blob can be omitted.

The contents in the blobs in inputs are the same as in the last call of forward, and can be used if necessary.

If a layer does not do backward propagation (e.g. a data layer), an empty backward function still has to be
defined explicitly.

shutdown(backend, layer_state)
Release all the resources allocated in setup_layer.

3.2. Layer 59

Mocha Documentation, Release 0.1.1

3.2.4 Layer Parameters

If a layer has train-able parameters, it should define a parameters field in the LayerState object, containing a
list of Parameter objects. It should also define the has_param characterization. The only computation the layer
needs to do, is to compute the gradients with respect to each parameter and write them into the gradient field of
each Parameter object.

Mocha will handle the updating of parameters during training automatically. Other parameter-related issues like
initialization, regularization and norm constraints will also be handled automatically.

3.2.5 Layer Activation Function

When it makes sense for a layer to have an activation function, it can add a neuron property to the Layer object
and define the has_neuron characterization. Everything else will be handled automatically.

3.3 Indices and tables

• genindex

• modindex

• search

60 Chapter 3. Developer’s Guide

Bibliography

[LeNet] Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P., Gradient-based learning applied to document recognition,
Proceedings of the IEEE, vol.86, no.11, pp.2278-2324, Nov 1998.

[BengioGlorot2010] Y. Bengio and X. Glorot, Understanding the difficulty of training deep feedforward neural net-
works, in Proceedings of AISTATS 2010, pp. 249-256.

[Saxe2013] Andrew M. Saxe, James L. McClelland, Surya Ganguli, Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks, http://arxiv.org/abs/1312.6120 with a presentation
https://www.youtube.com/watch?v=Ap7atx-Ki3Q

61

http://arxiv.org/abs/1312.6120
https://www.youtube.com/watch?v=Ap7atx-Ki3Q

Mocha Documentation, Release 0.1.1

62 Bibliography

Index

A
AccuracyLayer (built-in class), 39
Adam (built-in class), 46
ArgmaxLayer (built-in class), 28
AsyncHDF5DataLayer (built-in class), 27
auto_scale (DropoutLayer attribute), 32

B
backward() (built-in function), 59
batch_size (HDF5DataLayer attribute), 28
batch_size (MemoryDataLayer attribute), 28
batch_sizes (RandomNormalLayer attribute), 36
beta1 (Adam attribute), 46
beta2 (Adam attribute), 46
bias_cons (ConvolutionLayer attribute), 31
bias_cons (InnerProductLayer attribute), 32
bias_cons (TiedInnerProductLayer attribute), 35
bias_init (ConvolutionLayer attribute), 31
bias_init (InnerProductLayer attribute), 32
bias_init (TiedInnerProductLayer attribute), 35
bias_lr (ConvolutionLayer attribute), 31
bias_lr (InnerProductLayer attribute), 33
bias_lr (TiedInnerProductLayer attribute), 35
bias_regu (ConvolutionLayer attribute), 31
bias_regu (InnerProductLayer attribute), 32
bias_regu (TiedInnerProductLayer attribute), 35
BinaryAccuracyLayer (built-in class), 39
BinaryCrossEntropyLossLayer (built-in class), 38
bottoms (AccuracyLayer attribute), 39
bottoms (ArgmaxLayer attribute), 29
bottoms (BinaryAccuracyLayer attribute), 39
bottoms (BinaryCrossEntropyLossLayer attribute), 39
bottoms (ChannelPoolingLayer attribute), 29
bottoms (ConcatLayer attribute), 40
bottoms (ConvolutionLayer attribute), 31
bottoms (CropLayer attribute), 31
bottoms (DropoutLayer attribute), 32
bottoms (ElementWiseLayer attribute), 32
bottoms (GaussianKLLossLayer attribute), 39
bottoms (HDF5OutputLayer attribute), 40

bottoms (HingeLossLayer attribute), 36
bottoms (IdentityLayer attribute), 40
bottoms (Index2OnehotLayer attribute), 41
bottoms (InnerProductLayer attribute), 33
bottoms (LRNLayer attribute), 33
bottoms (MemoryOutputLayer attribute), 40
bottoms (MultinomialLogisticLossLayer attribute), 36
bottoms (PoolingLayer attribute), 34
bottoms (PowerLayer attribute), 34
bottoms (ReshapeLayer attribute), 41
bottoms (SoftlabelSoftmaxLossLayer attribute), 37
bottoms (SoftmaxLayer attribute), 35
bottoms (SoftmaxLossLayer attribute), 38
bottoms (SplitLayer attribute), 41
bottoms (SquareLossLayer attribute), 38
bottoms (TiedInnerProductLayer attribute), 36

C
channel_dim (ChannelPoolingLayer attribute), 29
ChannelPoolingLayer (built-in class), 29
chunk_size (AsyncHDF5DataLayer attribute), 27
ConcatLayer (built-in class), 40
ConstantInitializer (built-in class), 42
ConvolutionLayer (built-in class), 29
copy

() (built-in function), 56
crop_size (CropLayer attribute), 31
CropLayer (built-in class), 31

D
data (MemoryDataLayer attribute), 28
datasets (HDF5OutputLayer attribute), 40
DataTransformers.Scale (built-in class), 44
DataTransformers.SubMean (built-in class), 44
destroy() (built-in function), 56
dim (AccuracyLayer attribute), 39
dim (ArgmaxLayer attribute), 28
dim (ConcatLayer attribute), 40
dim (Index2OnehotLayer attribute), 40
dim (MultinomialLogisticLossLayer attribute), 37

63

Mocha Documentation, Release 0.1.1

dim (SoftlabelSoftmaxLossLayer attribute), 37
dim (SoftmaxLayer attribute), 35
dim (SoftmaxLossLayer attribute), 38
DropoutLayer (built-in class), 31
dump_statistics() (built-in function), 58

E
ElementWiseLayer (built-in class), 32
eltype (RandomNormalLayer attribute), 36
eltype() (built-in function), 56
epsilon (Adam attribute), 46
epsilon (Neurons.ReLU attribute), 42
erase

() (built-in function), 57
every_n_iter (L2Cons attribute), 44

F
filename (HDF5OutputLayer attribute), 40
fill

() (built-in function), 56
filter_cons (ConvolutionLayer attribute), 31
filter_init (ConvolutionLayer attribute), 30
filter_lr (ConvolutionLayer attribute), 31
filter_regu (ConvolutionLayer attribute), 31
force_overwrite (HDF5OutputLayer attribute), 40
forward() (built-in function), 59

G
gain (OrthogonalInitializer attribute), 43
GaussianInitializer (built-in class), 43
GaussianKLLossLayer (built-in class), 39
get_fea_size() (built-in function), 56
get_height() (built-in function), 56
get_num() (built-in function), 56
get_width() (built-in function), 56

H
HDF5DataLayer (built-in class), 27
HDF5OutputLayer (built-in class), 40
HingeLossLayer (built-in class), 36

I
IdentityLayer (built-in class), 40
Index2OnehotLayer (built-in class), 40
InnerProductLayer (built-in class), 32

K
kernel (ChannelPoolingLayer attribute), 29
kernel (ConvolutionLayer attribute), 30
kernel (LRNLayer attribute), 33
kernel (PoolingLayer attribute), 33

L
L1Regu (built-in class), 43

L2Cons (built-in class), 44
L2Regu (built-in class), 43
length() (built-in function), 56
load_from, 45
lr_policy (Adam attribute), 46
lr_policy (Nesterov attribute), 46
lr_policy (SGD attribute), 46
LRNLayer (built-in class), 33
LRPolicy.DecayOnValidation (built-in class), 46
LRPolicy.Exp (built-in class), 46
LRPolicy.Fixed (built-in class), 46
LRPolicy.Inv (built-in class), 46
LRPolicy.Staged (built-in class), 46
LRPolicy.Step (built-in class), 46

M
make_blob() (built-in function), 55
make_zero_blob() (built-in function), 55
max_iter, 45
mean (GaussianInitializer attribute), 43
mean_blob (DataTransformers.SubMean attribute), 44
mean_file (DataTransformers.SubMean attribute), 44
MemoryDataLayer (built-in class), 28
MemoryOutputLayer (built-in class), 40
mode (LRNLayer attribute), 33
mom_policy (Nesterov attribute), 46
mom_policy (SGD attribute), 46
MomPolicy.Fixed (built-in class), 47
MomPolicy.Linear (built-in class), 47
MomPolicy.Staged (built-in class), 47
MomPolicy.Step (built-in class), 47
MultinomialLogisticLossLayer (built-in class), 36

N
n_class (Index2OnehotLayer attribute), 41
n_filter (ConvolutionLayer attribute), 30
n_group (ConvolutionLayer attribute), 30
ndims() (built-in function), 56
Nesterov (built-in class), 46
neuron (ConvolutionLayer attribute), 30
neuron (InnerProductLayer attribute), 33
neuron (TiedInnerProductLayer attribute), 35
Neurons.Exponential (built-in class), 42
Neurons.Identity (built-in class), 41
Neurons.LReLU (built-in class), 42
Neurons.ReLU (built-in class), 42
Neurons.Sigmoid (built-in class), 42
Neurons.Tanh (built-in class), 42
no_copy (SplitLayer attribute), 41
NoCons (built-in class), 44
NoRegu (built-in class), 43
normalize (MultinomialLogisticLossLayer attribute), 37
normalize (SoftmaxLossLayer attribute), 38
NullInitializer (built-in class), 42

64 Index

Mocha Documentation, Release 0.1.1

O
operation (ElementWiseLayer attribute), 32
OrthogonalInitializer (built-in class), 43
output_dim (InnerProductLayer attribute), 32
output_dims (RandomNormalLayer attribute), 36

P
pad (ChannelPoolingLayer attribute), 29
pad (ConvolutionLayer attribute), 30
pad (PoolingLayer attribute), 34
param_key (ConvolutionLayer attribute), 30
param_key (InnerProductLayer attribute), 32
param_key (TiedInnerProductLayer attribute), 35
pooling (ChannelPoolingLayer attribute), 29
pooling (PoolingLayer attribute), 34
PoolingLayer (built-in class), 33
power (LRNLayer attribute), 33
power (PowerLayer attribute), 34
PowerLayer (built-in class), 34

R
random_crop (CropLayer attribute), 31
random_mirror (CropLayer attribute), 31
RandomMaskLayer (built-in class), 34
RandomNormalLayer (built-in class), 36
ratio (DropoutLayer attribute), 31
regu_coef, 45
reset_statistics() (built-in function), 59
reshape_blob() (built-in function), 55
ReshapeLayer (built-in class), 41

S
scale (DataTransformers.Scale attribute), 44
scale (LRNLayer attribute), 33
scale (PowerLayer attribute), 34
setup_layer() (built-in function), 59
SGD (built-in class), 45
shape (ReshapeLayer attribute), 41
shift (LRNLayer attribute), 33
shift (PowerLayer attribute), 34
shuffle (HDF5DataLayer attribute), 28
shutdown() (built-in function), 59
size() (built-in function), 56
Snapshot (built-in class), 48
SoftlabelSoftmaxLossLayer (built-in class), 37
SoftmaxLayer (built-in class), 34
SoftmaxLossLayer (built-in class), 37
source (HDF5DataLayer attribute), 28
SplitLayer (built-in class), 41
SquareLossLayer (built-in class), 38
statistic_names (TrainingSummary attribute), 48
std (GaussianInitializer attribute), 43
stride (ChannelPoolingLayer attribute), 29

stride (ConvolutionLayer attribute), 30
stride (PoolingLayer attribute), 33

T
threshold (L2Cons attribute), 44
tied_param_key (TiedInnerProductLayer attribute), 35
TiedInnerProductLayer (built-in class), 35
tops (ArgmaxLayer attribute), 29
tops (ChannelPoolingLayer attribute), 29
tops (ConcatLayer attribute), 40
tops (ConvolutionLayer attribute), 31
tops (CropLayer attribute), 31
tops (ElementWiseLayer attribute), 32
tops (HDF5DataLayer attribute), 28
tops (IdentityLayer attribute), 40
tops (Index2OnehotLayer attribute), 41
tops (InnerProductLayer attribute), 33
tops (LRNLayer attribute), 33
tops (MemoryDataLayer attribute), 28
tops (PoolingLayer attribute), 34
tops (PowerLayer attribute), 34
tops (RandomNormalLayer attribute), 36
tops (ReshapeLayer attribute), 41
tops (SoftmaxLayer attribute), 35
tops (SplitLayer attribute), 41
tops (TiedInnerProductLayer attribute), 36
TrainingSummary (built-in class), 48
transformers (HDF5DataLayer attribute), 28
transformers (MemoryDataLayer attribute), 28

V
ValidationPerformance (built-in class), 48
value (ConstantInitializer attribute), 43

W
weight (BinaryCrossEntropyLossLayer attribute), 39
weight (GaussianKLLossLayer attribute), 39
weight (HingeLossLayer attribute), 36
weight (MultinomialLogisticLossLayer attribute), 37
weight (SoftlabelSoftmaxLossLayer attribute), 37
weight (SoftmaxLossLayer attribute), 38
weight (SquareLossLayer attribute), 38
weight_cons (InnerProductLayer attribute), 32
weight_init (InnerProductLayer attribute), 32
weight_lr (InnerProductLayer attribute), 32
weight_regu (InnerProductLayer attribute), 32
weights (MultinomialLogisticLossLayer attribute), 37
weights (SoftmaxLossLayer attribute), 38

X
XavierInitializer (built-in class), 43

Index 65

	Tutorials
	User's Guide
	Developer's Guide
	Bibliography

