
Mocha Documentation
Release 0.0.2

pluskid

December 19, 2014

Contents

1 Tutorials 3
1.1 Training LeNet on MNIST . 3
1.2 Alex’s CIFAR-10 tutorial in Mocha . 8

2 User’s Guide 15
2.1 Networks . 15
2.2 Layers . 18
2.3 Neurons (Activation Functions) . 22
2.4 Initializers . 22
2.5 Regularizers . 23
2.6 Solvers . 23
2.7 Mocha Backends . 23
2.8 Tools . 25

3 Developer’s Guide 29
3.1 Blob . 29
3.2 Indices and tables . 29

Bibliography 31

i

ii

Mocha Documentation, Release 0.0.2

Mocha is a Deep Learning framework for Julia.

Contents 1

https://github.com/pluskid/Mocha.jl
http://julialang.org/

Mocha Documentation, Release 0.0.2

2 Contents

CHAPTER 1

Tutorials

1.1 Training LeNet on MNIST

This tutorial goes through the code in examples/mnist to explain the basic usages of Mocha. We will use the
architecture known as [LeNet], which is a deep convolutional neural network known to work well on handwritten
digit classification tasks. More specifically, we will use the Caffe’s modified architecture, by replacing the sigmoid
activation functions with Rectified Learning Unit (ReLU) activation functions.

1.1.1 Preparing the Data

MNIST is handwritten digit recognition dataset containing 60,000 training examples and 10,000 test examples.
Each example is a 28x28 single channel grayscale image. The dataset in a binary format could be downloaded
from Yann LeCun’s website. We have created a script get-mnist.sh to download the dataset, and it will call
mnist.convert.jl to convert the binary dataset into HDF5 file that Mocha could read.

When the conversion finishes, data/train.hdf5 and data/test.hdf5 will be generated.

1.1.2 Defining the Network Architecture

The LeNet consists of a convolution layer followed by a pooling layer, and then another convolution followed by a
pooling layer. After that, two densely connected layers were added. We don’t use a configuration file to define a
network architecture like Caffe, instead, the network definition is directly done in Julia. First of all, let’s import the
Mocha package.

using Mocha

Then we will define a data layer, which read the HDF5 file and provide input for the network:

data_layer = HDF5DataLayer(name="train-data", source="data/train.txt", batch_size=64)

Note the source is a simple text file what contains a list of real data files (in this case data/train.hdf5). This
behavior is the same as in Caffe, and could be useful when your dataset contains a lot of files. Note we also specified
the batch size as 64.

Next we define a convolution layer in a similar way:

conv_layer = ConvolutionLayer(name="conv1", n_filter=20, kernel=(5,5),
bottoms=[:data], tops=[:conv])

There are more parameters we specified here

3

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Mocha Documentation, Release 0.0.2

name Every layer could be given a name. When saving the model to disk and loading back, this is used as an identifier
to map to the correct layer. So if your layer contains learned parameters (a convolution layer contains learned
filters), you should give it a unique name. It is a good practice to give every layer a unique name, for the purpose
of getting more informative debugging information when there is any potential issues.

n_filter Number of convolution filters.

kernel The size of each filter. This is specified in a tuple containing kernel width and kernel height, respectively.
In this case, we are defining a 5x5 square filter size.

bottoms An array of symbols specifying where to get data from. In this case, we are asking for a single data source
called :data. This is provided by the HDF5 data layer we just defined. By default, the HDF5 data layer tries
to find two dataset named data and label from the HDF5 file, and provide two stream of data called :data
and :label, respectively. You can change that by specifying the tops property for the HDF5 data layer if
needed.

tops This specify a list of names for the output of the convolution layer. In this case, we are only taking one stream
of input and after convolution, we output on stream of convolved data with the name :conv.

Another convolution layer and pooling layer are defined similarly, with more filters this time:

pool_layer = PoolingLayer(name="pool1", kernel=(2,2), stride=(2,2),
bottoms=[:conv], tops=[:pool])

conv2_layer = ConvolutionLayer(name="conv2", n_filter=50, kernel=(5,5),
bottoms=[:pool], tops=[:conv2])

Note the tops and bottoms define the computation or data dependency. After the convolution and pooling layers,
we add two fully connected layers. They are called InnerProductLayer because the computation is basically
inner products between the input and the layer weights. The layer weights are also learned, so we also give names to
the two layers:

fc1_layer = InnerProductLayer(name="ip1", output_dim=500,
neuron=Neurons.ReLU(), bottoms=[:pool2], tops=[:ip1])

fc2_layer = InnerProductLayer(name="ip2", output_dim=10,
bottoms=[:ip1], tops=[:ip2])

Everything should be self-evidence. The output_dim property of an inner product layer specify the dimension of
the output. Note the dimension of the input is automatically determined from the bottom data stream.

Note for the first inner product layer, we specifies a Rectified Learning Unit (ReLU) activation function via the
neuron property. An activation function could be added to almost all computation layers. By default, no activa-
tion function, or the identity activation function is used. We don’t use activation function for the last inner product
layer, because that layer acts as a linear classifier. For more details, see Neurons (Activation Functions).

The output dimension of the last inner product layer is 10, which corresponds to the number of classes (digits 0~9) of
our problem.

This is the basic structure of LeNet. In order to train this network, we need to define a loss function. This is done by
adding a loss layer:

loss_layer = SoftmaxLossLayer(name="loss", bottoms=[:ip2,:label])

Note this softmax loss layer takes as input :ip2, which is the output of the last inner product layer, and :label,
which comes directly from the HDF5 data layer. It will compute an averaged loss over each mini batch, which allows
us to initiate back propagation to update network parameters.

1.1.3 Configuring Backend and Building Network

Now we have defined all the relevant layers. Let’s setup the computation backend and construct a network with those
layers. In this example, we will go with the simple pure Julia CPU backend first:

4 Chapter 1. Tutorials

Mocha Documentation, Release 0.0.2

sys = System(CPUBackend())
init(sys)

The init function of a Mocha System will initialize the computation backend. With an initialized system, we could
go ahead and construct our network:

common_layers = [conv_layer, pool_layer, conv2_layer, pool2_layer,
fc1_layer, fc2_layer]

net = Net("MNIST-train", sys, [data_layer, common_layers..., loss_layer])

A network is built by passing the constructor an initialized system, and a list of layers. Note we use common_layers
to collect a subset of the layers. We will explain this in a minute.

1.1.4 Configuring Solver

We will use Stochastic Gradient Descent (SGD) to solve or train our deep network.

params = SolverParameters(max_iter=10000, regu_coef=0.0005,
momentum=0.9, lr_policy=LRPolicy.Inv(0.01, 0.0001, 0.75))

solver = SGD(params)

The behavior of the solver is specified in the following parameters

max_iter Max number of iterations the solver will run to train the network.

regu_coef Regularization coefficient. By default, both the convolution layer and the inner product layer have
L2 regularizers for their weights (and no regularization for bias). Those regularizations could be customized
for each layer individually. The parameter here is just a global scaling factor for all the local regularization
coefficients if any.

momentum The momentum used in SGD. See the Caffe document for rules of thumb for setting the learning rate and
momentum.

lr_policy The learning rate policy. In this example, we are using the Inv policy with gamma = 0.001 and power
= 0.75. This policy will gradually shrink the learning rate, by setting it to base_lr * (1 + gamma * iter)-power.

1.1.5 Coffee Breaks for the Solver

Now our solver is ready to go. But in order to give him a healthy working plan, we decided to allow him some chances
to have some coffee breaks.

add_coffee_break(solver, TrainingSummary(), every_n_iter=100)

First of all, we allow the solver to have a coffee break after every 100 iterations so that he could give us a brief summary
of the training process. Currently TrainingSummary will print the loss function value on the last training mini-
batch.

We also add a coffee break to save a snapshot for the trained network every 5,000 iterations.

add_coffee_break(solver,
Snapshot("snapshots", auto_load=true), every_n_iter=5000)

Here "snapshots" is the name of the directory you want to save snapshots to. By setting auto_load to true,
Mocha will automatically search and resume from the last saved snapshots.

If you additionally set also_load_solver_state to false, Mocha will load the saved network as initialization,
but pretend to be training from scratch. This could be useful if you are fine tuning based on some pre-trained network.

1.1. Training LeNet on MNIST 5

http://caffe.berkeleyvision.org/tutorial/solver.html

Mocha Documentation, Release 0.0.2

In order to see whether we are really making progress or simply overfitting, we also wish to see the performance on a
separate validation set periodically. In this example, we simply use the test dataset as the validation set.

We will define a new network to perform the evaluation. The evaluation network will have exactly the same architec-
ture, except with a different data layer that reads from validation dataset instead of training set. We also do not need
the softmax loss layer as we will not train the validation network. Instead, we will add an accuracy layer on the top,
which will compute the classification accuracy for us.

data_layer_test = HDF5DataLayer(name="test-data", source="data/test.txt", batch_size=100)
acc_layer = AccuracyLayer(name="test-accuracy", bottoms=[:ip2, :label])
test_net = Net("MNIST-test", sys, [data_layer_test, common_layers..., acc_layer])

Note how we re-use the common_layers variable defined a moment ago to reuse the description of the network
architecture. By passing the same layer object used to define the training net to the constructor of the validation net,
Mocha will be able to automatically setup parameter sharing between the two networks. The two networks will look
like this:

HDF5
train conv1 pool1 conv2 pool2 ip1 ip2 softmax

loss

HDF5
test conv1 pool1 conv2 pool2 ip1 ip2 accuracy

shared
parameters

Now we are ready to add another coffee break to report the validation performance:

add_coffee_break(solver, ValidationPerformance(test_net), every_n_iter=1000)

Please note we use a different batch size (100) in the validation network. During the coffee break, Mocha will run
exactly one epoch on the validation net (100 iterations in our case, as we have 10,000 samples in MNIST test set), and
report the average classification accuracy. You do not need to specify the number of iterations here as the HDF5 data
layer will report epoch number as it goes through a full pass of the whole dataset.

1.1.6 Training

Without further due, we could finally start the training process:

solve(solver, net)

destroy(net)

6 Chapter 1. Tutorials

Mocha Documentation, Release 0.0.2

destroy(test_net)
shutdown(sys)

After training, we will shutdown the system to release all the allocated resources. Now you are ready run the script

julia mnist.jl

As training goes on, you will see training progress printed. It will take about 10~20 seconds every 100 iterations on
my machine depending on the server load and many factors.

14-Nov 11:56:13:INFO:root:001700 :: TRAIN obj-val = 0.43609169
14-Nov 11:56:36:INFO:root:001800 :: TRAIN obj-val = 0.21899594
14-Nov 11:56:58:INFO:root:001900 :: TRAIN obj-val = 0.19962406
14-Nov 11:57:21:INFO:root:002000 :: TRAIN obj-val = 0.06982464
14-Nov 11:57:40:INFO:root:
14-Nov 11:57:40:INFO:root:## Performance on Validation Set
14-Nov 11:57:40:INFO:root:---
14-Nov 11:57:40:INFO:root: Accuracy (avg over 10000) = 96.0500%
14-Nov 11:57:40:INFO:root:---
14-Nov 11:57:40:INFO:root:
14-Nov 11:58:01:INFO:root:002100 :: TRAIN obj-val = 0.18091436
14-Nov 11:58:21:INFO:root:002200 :: TRAIN obj-val = 0.14225903

The training could run faster by enabling native extension for the CPU backend, or use a CUDA backend if CUDA
compatible GPU devices are available. Please refer to Mocha Backends for how to use different backends.

Just to give you a feeling, this is a sample log from running with Native Extension enabled CPU backend. It takes
about 5 seconds to run 100 iterations.

14-Nov 12:15:56:INFO:root:001700 :: TRAIN obj-val = 0.82937032
14-Nov 12:16:01:INFO:root:001800 :: TRAIN obj-val = 0.35497263
14-Nov 12:16:06:INFO:root:001900 :: TRAIN obj-val = 0.31351241
14-Nov 12:16:11:INFO:root:002000 :: TRAIN obj-val = 0.10048970
14-Nov 12:16:14:INFO:root:
14-Nov 12:16:14:INFO:root:## Performance on Validation Set
14-Nov 12:16:14:INFO:root:---
14-Nov 12:16:14:INFO:root: Accuracy (avg over 10000) = 94.5700%
14-Nov 12:16:14:INFO:root:---
14-Nov 12:16:14:INFO:root:
14-Nov 12:16:18:INFO:root:002100 :: TRAIN obj-val = 0.20689486
14-Nov 12:16:23:INFO:root:002200 :: TRAIN obj-val = 0.17757215

The followings are a sample log from running with the CUDA backend. It runs about 300 iterations per second.

14-Nov 12:57:07:INFO:root:001700 :: TRAIN obj-val = 0.33347249
14-Nov 12:57:07:INFO:root:001800 :: TRAIN obj-val = 0.16477060
14-Nov 12:57:07:INFO:root:001900 :: TRAIN obj-val = 0.18155883
14-Nov 12:57:08:INFO:root:002000 :: TRAIN obj-val = 0.06635486
14-Nov 12:57:08:INFO:root:
14-Nov 12:57:08:INFO:root:## Performance on Validation Set
14-Nov 12:57:08:INFO:root:---
14-Nov 12:57:08:INFO:root: Accuracy (avg over 10000) = 96.2200%
14-Nov 12:57:08:INFO:root:---
14-Nov 12:57:08:INFO:root:
14-Nov 12:57:08:INFO:root:002100 :: TRAIN obj-val = 0.20724633
14-Nov 12:57:08:INFO:root:002200 :: TRAIN obj-val = 0.14952177

1.1. Training LeNet on MNIST 7

Mocha Documentation, Release 0.0.2

1.1.7 Remarks

The accuracy from two different trains are different due to different random initialization. The objective function
values shown here are also slightly different to Caffe’s, as until recently, Mocha counts regularizers in the forward
stage and add them into objective functions. This behavior is removed to avoid unnecessary computation in more
recent versions of Mocha.

1.2 Alex’s CIFAR-10 tutorial in Mocha

This example is converted from Caffe’s CIFAR-10 tutorials, which was originally built based on details from Alex
Krizhevsky’s cuda-convnet. In this example, we will demonstrate how to translate a network definition in Caffe to
Mocha, and train the network to roughly reproduce the test error rate of 18% (without data augmentation) as reported
in Alex Krizhevsky’s website.

The CIFAR-10 dataset is a labeled subset of the 80 Million Tiny Images dataset, containing 60,000 32x32 color images
in 10 categories. They are split into 50,000 training images and 10,000 test images. The number of samples are the
same to the MNIST example. However, the images here are a bit larger and have 3 channels. As we will see soon,
the network is also larger, with one extra convolution and pooling and two local response normalization layers. It is
recommended to read the MNIST tutorial first, as we will not repeat many details here.

1.2.1 Caffe’s Tutorial and Code

Caffe’s tutorial for CIFAR-10 can be found on their website. The code could be located in examples/cifar10
under Caffe’s source tree. The code folder contains several different definition of networks and solvers. The filenames
should be self-explanatory. The quick files corresponds to a smaller network without local response normalization
layers. And this is documented in Caffe’s tutorial, according to which, produces around 75% test accuracy.

We will be using the full models, which gives us around 81% test accuracy. Caffe’s definition of the full model could
be found in the file cifar10_full_train_test.prototxt. The training script is train_full.sh, which trains in 3 different
stages with solvers defined in

1. cifar10_full_solver.prototxt

2. cifar10_full_solver_lr1.prototxt

3. cifar10_full_solver_lr2.prototxt

respectively. This looks complicated. But if you compare the files, you will find that the three stages are basically
using the same solver configurations except with a ten-fold learning rate decrease after each stage.

1.2.2 Preparing the Data

Looking at the data layer of Caffe’s network definition, it uses a LevelDB database as a data source. The LevelDB
database is converted from the original binary files downloaded from the CIFAR-10 dataset’s website. Mocha does not
support LevelDB database, so we will do the same thing: download the original binary files and convert into a Mocha-
recognizable data format, HDF5 dataset here. We have provided a Julia script convert.jl 1. You can call get-cifar10.sh
directly, which will automatically download the binary files, convert it to HDF5 and prepare text index files that points
to the HDF5 datasets.

Notice in Caffe’s data layer, a transform_param is specified with a mean_file. Since we need to compute the
data mean during data conversion, for simplicity, we also perform mean subtraction when converting data to HDF5
format. See convert.jl for details. Please refer to the user’s guide for more details about HDF5 data format that Mocha
reads.

1 All the CIFAR-10 example related code in Mocha could be found in the examples/cifar10 directory under the source tree.

8 Chapter 1. Tutorials

http://caffe.berkeleyvision.org/gathered/examples/cifar10.html
https://code.google.com/p/cuda-convnet2/
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://people.csail.mit.edu/torralba/tinyimages/
http://caffe.berkeleyvision.org/gathered/examples/cifar10.html
https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full_train_test.prototxt
https://github.com/BVLC/caffe/blob/master/examples/cifar10/train_full.sh
https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full_solver.prototxt
https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full_solver_lr1.prototxt
https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full_solver_lr2.prototxt
http://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/pluskid/Mocha.jl/blob/master/examples/cifar10/convert.jl
https://github.com/pluskid/Mocha.jl/blob/master/examples/cifar10/get-cifar10.sh
https://github.com/pluskid/Mocha.jl/blob/master/examples/cifar10/convert.jl

Mocha Documentation, Release 0.0.2

After converting the data, you should be ready to load the data in Mocha with HDF5DataLayer. We define two
layers for training data and test data separately, using the same batch size as in Caffe’s model definition:

data_tr_layer = HDF5DataLayer(name="data-train", source="data/train.txt", batch_size=100)
data_tt_layer = HDF5DataLayer(name="data-test", source="data/test.txt", batch_size=100)

In order to share the definition of common computation layers, Caffe use the same file to define both the training and
test networks, and use phase to include and exclude layers that are used only in training or testing phases. Mocha does
not do this as the layers defined in Julia code are just Julia objects. We will simply construct training and test nets with
a different subsets of those Julia layer objects.

1.2.3 Computation and Loss Layers

Translating the computation layers should be straightforward. For example, the conv1 layer is defined in Caffe as

layers {
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
stride: 1
weight_filler {

type: "gaussian"
std: 0.0001

}
bias_filler {

type: "constant"
}

}
}

This translates to Mocha as:

conv1_layer = ConvolutionLayer(name="conv1", n_filter=32, kernel=(5,5), pad=(2,2),
stride=(1,1), filter_init=GaussianInitializer(std=0.0001),
bottoms=[:data], tops=[:conv1])

Tip:
• The pad, kernel_size and stride parameters in Caffe means the same pad for both the width and height

dimension unless specified explicitly. In Mocha, we always explicitly use a 2-tuple to specify the parameters for
the two dimensions.

• A filler in Caffe corresponds to an initializer in Mocha.

• Mocha has a constant initializer (initialize to 0) for the bias by default, so we do not need to specify it explicitly.

The rest of the translated Mocha computation layers are listed here:

pool1_layer = PoolingLayer(name="pool1", kernel=(3,3), stride=(2,2), neuron=Neurons.ReLU(),
bottoms=[:conv1], tops=[:pool1])

norm1_layer = LRNLayer(name="norm1", kernel=3, scale=5e-5, power=0.75, mode=LRNMode.WithinChannel(),

1.2. Alex’s CIFAR-10 tutorial in Mocha 9

Mocha Documentation, Release 0.0.2

bottoms=[:pool1], tops=[:norm1])
conv2_layer = ConvolutionLayer(name="conv2", n_filter=32, kernel=(5,5), pad=(2,2),

stride=(1,1), filter_init=GaussianInitializer(std=0.01),
bottoms=[:norm1], tops=[:conv2], neuron=Neurons.ReLU())

pool2_layer = PoolingLayer(name="pool2", kernel=(3,3), stride=(2,2), pooling=Pooling.Mean(),
bottoms=[:conv2], tops=[:pool2])

norm2_layer = LRNLayer(name="norm2", kernel=3, scale=5e-5, power=0.75, mode=LRNMode.WithinChannel(),
bottoms=[:pool2], tops=[:norm2])

conv3_layer = ConvolutionLayer(name="conv3", n_filter=64, kernel=(5,5), pad=(2,2),
stride=(1,1), filter_init=GaussianInitializer(std=0.01),
bottoms=[:norm2], tops=[:conv3], neuron=Neurons.ReLU())

pool3_layer = PoolingLayer(name="pool3", kernel=(3,3), stride=(2,2), pooling=Pooling.Mean(),
bottoms=[:conv3], tops=[:pool3])

ip1_layer = InnerProductLayer(name="ip1", output_dim=10, weight_init=GaussianInitializer(std=0.01),
weight_regu=L2Regu(250), bottoms=[:pool3], tops=[:ip1])

You might have already noticed is that Mocha does not have a ReLU layer. Instead, ReLU, like Sigmoid, are treated
as neurons or activation functions attached to layers.

1.2.4 Constructing the Network

In order to train the network, we need to define a loss layer. We also define an accuracy layer to be used in the test
network for us to see how our network performs on the test dataset during training. Translating directly from Caffe’s
definitions:

loss_layer = SoftmaxLossLayer(name="softmax", bottoms=[:ip1, :label])
acc_layer = AccuracyLayer(name="accuracy", bottoms=[:ip1, :label])

Next we collect the layers, and define a Mocha Net on a CuDNNBackend. You could use CPUBackend if no
CUDA-compatible GPU devices are available. But it will be much slower (see also Mocha Backends).

common_layers = [conv1_layer, pool1_layer, norm1_layer, conv2_layer, pool2_layer, norm2_layer,
conv3_layer, pool3_layer, ip1_layer]

sys = System(CuDNNBackend())
#sys = System(CPUBackend())
init(sys)

net = Net("CIFAR10-train", sys, [data_tr_layer, common_layers..., loss_layer])

1.2.5 Configuring the Solver

The configuration for Caffe’s solver looks like this

reduce learning rate after 120 epochs (60000 iters) by factor 0f 10
then another factor of 10 after 10 more epochs (5000 iters)

The train/test net protocol buffer definition
net: "examples/cifar10/cifar10_full_train_test.prototxt"
test_iter specifies how many forward passes the test should carry out.
In the case of CIFAR10, we have test batch size 100 and 100 test iterations,
covering the full 10,000 testing images.
test_iter: 100
Carry out testing every 1000 training iterations.
test_interval: 1000
The base learning rate, momentum and the weight decay of the network.

10 Chapter 1. Tutorials

Mocha Documentation, Release 0.0.2

base_lr: 0.001
momentum: 0.9
weight_decay: 0.004
The learning rate policy
lr_policy: "fixed"
Display every 200 iterations
display: 200
The maximum number of iterations
max_iter: 60000
snapshot intermediate results
snapshot: 10000
snapshot_prefix: "examples/cifar10/cifar10_full"
solver mode: CPU or GPU
solver_mode: GPU

First of all, the learning rate is drop by a factor of 10 2. Caffe implements this by having three solver configurations
with different learning rate for each stage. We could do the same thing for Mocha, but Mocha has a staged learning
policy that makes this easier:

lr_policy = LRPolicy.Staged(
(60000, LRPolicy.Fixed(0.001)),
(5000, LRPolicy.Fixed(0.0001)),
(5000, LRPolicy.Fixed(0.00001)),

)
solver_params = SolverParameters(max_iter=70000,

regu_coef=0.004, momentum=0.9, lr_policy=lr_policy)
solver = SGD(solver_params)

The other parameters like regularization coefficient, momentum are directly translated from Caffe’s solver configura-
tion. Progress report, automatic snapshots could equivalently be done in Mocha as coffee breaks for the solver:

report training progress every 200 iterations
add_coffee_break(solver, TrainingSummary(), every_n_iter=200)

save snapshots every 5000 iterations
add_coffee_break(solver,

Snapshot("snapshots", auto_load=true),
every_n_iter=5000)

show performance on test data every 1000 iterations
test_net = Net("CIFAR10-test", sys, [data_tt_layer, common_layers..., acc_layer])
add_coffee_break(solver, ValidationPerformance(test_net), every_n_iter=1000)

1.2.6 Training

Now we could start training by calling solve(solver, net). Depending on different backends, the training
speed could vary. Here are some sample training logs from my own test. Note this is not a controlled comparison, just
to get a rough feeling.

Pure Julia on CPU

The training is quite slow on a pure Julia backend. It takes about 15 minutes to run every 200 iterations.

2 Looking at the Caffe’s solver configuration, I happily realized that I am not the only person in the world who sometimes mis-type o as 0. :P

1.2. Alex’s CIFAR-10 tutorial in Mocha 11

Mocha Documentation, Release 0.0.2

20-Nov 06:58:26:INFO:root:004600 :: TRAIN obj-val = 1.07695698
20-Nov 07:13:25:INFO:root:004800 :: TRAIN obj-val = 1.06556938
20-Nov 07:28:26:INFO:root:005000 :: TRAIN obj-val = 1.15177973
20-Nov 07:30:35:INFO:root:
20-Nov 07:30:35:INFO:root:## Performance on Validation Set
20-Nov 07:30:35:INFO:root:---
20-Nov 07:30:35:INFO:root: Accuracy (avg over 10000) = 62.8200%
20-Nov 07:30:35:INFO:root:---
20-Nov 07:30:35:INFO:root:
20-Nov 07:45:33:INFO:root:005200 :: TRAIN obj-val = 0.93760641
20-Nov 08:00:30:INFO:root:005400 :: TRAIN obj-val = 0.95650533
20-Nov 08:15:29:INFO:root:005600 :: TRAIN obj-val = 1.03291103
20-Nov 08:30:21:INFO:root:005800 :: TRAIN obj-val = 1.01833960
20-Nov 08:45:17:INFO:root:006000 :: TRAIN obj-val = 1.10167430
20-Nov 08:47:27:INFO:root:
20-Nov 08:47:27:INFO:root:## Performance on Validation Set
20-Nov 08:47:27:INFO:root:---
20-Nov 08:47:27:INFO:root: Accuracy (avg over 10000) = 64.7100%
20-Nov 08:47:27:INFO:root:---
20-Nov 08:47:27:INFO:root:
20-Nov 09:02:24:INFO:root:006200 :: TRAIN obj-val = 0.88323826

CPU with Native Extension

We enabled Mocha’s native extension, but disabled OpenMP by setting the OMP number of threads to 1:

ENV["OMP_NUM_THREADS"] = 1
blas_set_num_threads(1)

According to the log, it takes roughly 160 seconds to finish every 200 iterations.

20-Nov 09:29:10:INFO:root:000800 :: TRAIN obj-val = 1.46420457
20-Nov 09:31:48:INFO:root:001000 :: TRAIN obj-val = 1.63248945
20-Nov 09:32:22:INFO:root:
20-Nov 09:32:22:INFO:root:## Performance on Validation Set
20-Nov 09:32:22:INFO:root:---
20-Nov 09:32:22:INFO:root: Accuracy (avg over 10000) = 44.4300%
20-Nov 09:32:22:INFO:root:---
20-Nov 09:32:22:INFO:root:
20-Nov 09:35:00:INFO:root:001200 :: TRAIN obj-val = 1.33312901
20-Nov 09:37:38:INFO:root:001400 :: TRAIN obj-val = 1.40529397
20-Nov 09:40:16:INFO:root:001600 :: TRAIN obj-val = 1.26366557
20-Nov 09:42:54:INFO:root:001800 :: TRAIN obj-val = 1.29758151
20-Nov 09:45:32:INFO:root:002000 :: TRAIN obj-val = 1.40923050
20-Nov 09:46:06:INFO:root:
20-Nov 09:46:06:INFO:root:## Performance on Validation Set
20-Nov 09:46:06:INFO:root:---
20-Nov 09:46:06:INFO:root: Accuracy (avg over 10000) = 51.0400%
20-Nov 09:46:06:INFO:root:---
20-Nov 09:46:06:INFO:root:
20-Nov 09:48:44:INFO:root:002200 :: TRAIN obj-val = 1.24579735
20-Nov 09:51:22:INFO:root:002400 :: TRAIN obj-val = 1.22985339

We also tried to use multi-thread computing:

ENV["OMP_NUM_THREADS"] = 16
blas_set_num_threads(16)

12 Chapter 1. Tutorials

Mocha Documentation, Release 0.0.2

By using 16 cores to compute, I got very slight improvement (which may well due to external factors as I did not
control the comparison environment at all), with roughly 150 seconds every 200 iterations. I did not try multi-thread
computing with less or more threads.

20-Nov 10:29:34:INFO:root:002400 :: TRAIN obj-val = 1.25820349
20-Nov 10:32:04:INFO:root:002600 :: TRAIN obj-val = 1.22480259
20-Nov 10:34:32:INFO:root:002800 :: TRAIN obj-val = 1.25739809
20-Nov 10:37:02:INFO:root:003000 :: TRAIN obj-val = 1.32196600
20-Nov 10:37:36:INFO:root:
20-Nov 10:37:36:INFO:root:## Performance on Validation Set
20-Nov 10:37:36:INFO:root:---
20-Nov 10:37:36:INFO:root: Accuracy (avg over 10000) = 56.4300%
20-Nov 10:37:36:INFO:root:---
20-Nov 10:37:36:INFO:root:
20-Nov 10:40:06:INFO:root:003200 :: TRAIN obj-val = 1.17503929
20-Nov 10:42:40:INFO:root:003400 :: TRAIN obj-val = 1.13562913
20-Nov 10:45:09:INFO:root:003600 :: TRAIN obj-val = 1.17141657
20-Nov 10:47:40:INFO:root:003800 :: TRAIN obj-val = 1.20520208
20-Nov 10:50:12:INFO:root:004000 :: TRAIN obj-val = 1.24686298
20-Nov 10:50:47:INFO:root:
20-Nov 10:50:47:INFO:root:## Performance on Validation Set
20-Nov 10:50:47:INFO:root:---
20-Nov 10:50:47:INFO:root: Accuracy (avg over 10000) = 59.4500%
20-Nov 10:50:47:INFO:root:---
20-Nov 10:50:47:INFO:root:
20-Nov 10:53:16:INFO:root:004200 :: TRAIN obj-val = 1.11022978
20-Nov 10:55:49:INFO:root:004400 :: TRAIN obj-val = 1.04538457

CUDA with cuDNN

It takes roughly 10 seconds to finish every 200 iterations on the CuDNNBackend.

20-Nov 01:16:48:INFO:root:001400 :: TRAIN obj-val = 1.47859097
20-Nov 01:16:57:INFO:root:001600 :: TRAIN obj-val = 1.33097243
20-Nov 01:17:07:INFO:root:001800 :: TRAIN obj-val = 1.33654988
20-Nov 01:17:16:INFO:root:002000 :: TRAIN obj-val = 1.50953197
20-Nov 01:17:18:INFO:root:
20-Nov 01:17:18:INFO:root:## Performance on Validation Set
20-Nov 01:17:18:INFO:root:---
20-Nov 01:17:18:INFO:root: Accuracy (avg over 10000) = 50.2300%
20-Nov 01:17:18:INFO:root:---
20-Nov 01:17:18:INFO:root:
20-Nov 01:17:27:INFO:root:002200 :: TRAIN obj-val = 1.29346514
20-Nov 01:17:37:INFO:root:002400 :: TRAIN obj-val = 1.32249010
20-Nov 01:17:46:INFO:root:002600 :: TRAIN obj-val = 1.27704692
20-Nov 01:17:56:INFO:root:002800 :: TRAIN obj-val = 1.25375235
20-Nov 01:18:05:INFO:root:003000 :: TRAIN obj-val = 1.38656604
20-Nov 01:18:07:INFO:root:
20-Nov 01:18:07:INFO:root:## Performance on Validation Set
20-Nov 01:18:07:INFO:root:---
20-Nov 01:18:07:INFO:root: Accuracy (avg over 10000) = 56.6100%
20-Nov 01:18:07:INFO:root:---

1.2. Alex’s CIFAR-10 tutorial in Mocha 13

Mocha Documentation, Release 0.0.2

14 Chapter 1. Tutorials

CHAPTER 2

User’s Guide

2.1 Networks

2.1.1 Overview

In deep learning, computations are abstracted into relatively isolated layers. The layers are connected together ac-
cording to a given architecture that describes a data flow. Starting with the data layer: it takes input from a dataset or
user input, do some data pre-processing, and then produce a stream of processed data. The output of the data layer is
connected to the input of some computation layer, which again produces a stream of computed output that gets con-
nected to the input of some upper layers. At the top of a network, there is typically a layer that produces the network
prediction or compute the loss function value according to provided ground-truth labels.

During training, the same data path, except in the reversed direction, is used to propagate the error back to each layers
using chain rules. Via back propagation, each layer could compute the gradients for its own parameters, and update
the parameters according to some optimization schemes. Again, the computation is abstracted into layers.

The abstraction and separating layers from architecture are important. The library implementation could focus on
each layer type independently, and does not need to worry about how those layers are going to be connected with each
other. On the other hand, the network designer could focus on the architecture, and does not need to worry about the
internal computations of layers. This enables us to compose layers almost arbitrarily to create very deep / complicated
networks. The network could be carrying out highly sophisticated computations when viewed as a whole, yet all the
complexities are nicely decomposed into manageable pieces.

Most of the illustrations for (deep) neural networks look like the following image stolen from Wikipedia’s page on
Artificial Neural Networks:

15

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network

Mocha Documentation, Release 0.0.2

Output

Hidden

Input

When writing Mocha, I found this kind of illustrations a bit confusing, as it does not align well with the abstract
concept of layers we just described. In our abstraction, the computation is done within each layers, and the network
architecture specifies the data path connections for the layers only. In the figure above, the “Input”, “Hidden”, and
“Output” labels are put on the nodes, suggesting the nodes are layers. However, the nodes do not do computation,
instead, computations are specified by the arrows connecting those nodes.

On the other hand, I think the following kind of illustration is clearer, for the purpose of abstracting layers and
architectures separately:

16 Chapter 2. User’s Guide

Mocha Documentation, Release 0.0.2

y1
1

x2
2

y2
3 x3

3

data inner product softmax

Each layer is now represented as a box that has inputs (denoted by 𝑥𝐿 for the 𝐿-th layer) and outputs (denoted by 𝑦𝐿).
Now the architecture specifies which layer’s outputs connect to which layer’s inputs (the dark lines in the figure). On
the other hand, the intra-layer connections, or computations (see dotted line in the figure) should be isolated from the
outside world.

Note: Unlike the intra-layer connections, the inter-layer connections are drawn as simple parallel lines, because they
are essentially a point-wise copying operation. Because all the computations are abstracted to be inside the layers,
there is no real computation in between them. Mathematically, this means 𝑦𝐿 = 𝑥𝐿+1. In actual implementation, data
copying is avoided via data sharing.

Of course, the choice is only a matter of taste, but as we will see, using the latter kind of illustration makes it much
easier to understand Mocha’s internal structure and end-user interface.

2.1.2 Network Architecture

Specifying a network architecture in Mocha means defining a set of layers, and connecting them. Taking the figure
above for example, we could define a data layer and an inner product layer

data_layer = HDF5DataLayer(name="data", source="data-list.txt", batch_size=64, tops=[:data])
ip_layer = InnerProductLayer(name="ip", output_dim=500, tops=[:ip], bottoms=[:data])

Note the tops and bottoms properties give names to the output and input of the layer. Since the name for the
input of ip_layer matches the name for the output of data_layer, they will be connected as shown in the figure
above. The softmax layer could be defined similarly. Mocha will do a topological sort on the collection of layers and
automatically figure out the connection defined implicitly by the names of the inputs and outputs of each layer.

2.1.3 Layer Implementation

The layer is completely unaware of what happens in the outside world. Two important procedures need to be defined
to implement a layer:

• Feed-forward: given the inputs, compute the outputs. For example, for the inner product layer, it will compute
the outputs as 𝑦𝑖 =

∑︀
𝑗 𝑤𝑖𝑗𝑥𝑗 .

• Back-propagate: given the errors propagated from upper layers, compute the gradient of the layer parameters,
and propagate the error down to lower layers. Note this is described in very vague terms like errors. Given the

2.1. Networks 17

Mocha Documentation, Release 0.0.2

abstraction we choose here, those vague terms could become very clear.

Specifically, back-propagation is used during network training, when an optimization algorithm want to compute the
gradient of each parameter with respect to an objective function. Typically, the objective function is some loss function
that penalize incorrect predictions given the ground-truth labels. Let’s call the objective function 𝑓 .

Now let’s switch to the viewpoint of an inner product layer: it needs to compute the gradients of the weights parameters
𝑤 with respect to 𝑓 . Of course, since we restrict the layer from accessing the outside world, it does not know what 𝑓
is. But the gradients could be computed via chain rule

𝜕𝑓

𝜕𝑤𝑖𝑗
=

𝜕𝑦𝑖
𝜕𝑤𝑖𝑗

× 𝜕𝑓

𝜕𝑦𝑖

The red part could be computed within the layer, and the blue part is the so called “errors propagated from the upper
layers”. It comes from the reversed data path as used in the feed-forward pass.

Now our inner product layer is ready to “propagate the errors down to lower layers”, precisely speaking, this means
computing

𝜕𝑓

𝜕𝑥𝑖
=

∑︁
𝑗

𝜕𝑦𝑗
𝜕𝑥𝑖

× 𝜕𝑓

𝜕𝑦𝑗

Again, this is decomposed into a part that could be computed internally and a part that comes from the “top”. Recall
we said the 𝐿-th layer’s inputs 𝑥𝐿

𝑖 is equal to the (𝐿− 1)-th layer’s outputs 𝑦𝐿−1
𝑖 . That means what we just computed

𝜕𝑓

𝜕𝑥𝐿
𝑖

=
𝜕𝑓

𝜕𝑦𝐿−1
𝑖

is exactly what the lower layer’s “errors propagated from upper layers”. By tracing the whole data path reversely, we
now help each layers compute the gradients of their own parameters internally. And this is called back-propagation.

2.2 Layers

2.2.1 Overview

There are four basic layer types in Mocha:

Data Layers Read data from source and feed them to top layers.

Computation Layer Take input stream from bottom layers, carry out computations and feed the computed results to
top layers.

Loss Layers Take computed results (and ground truth labels) from bottom layers, compute a real number loss. Loss
values from all the loss layers and regularizers in a net are added together to define the final loss function of the
net. The loss function will be used to train the net parameters in back propagation.

Statistics Layers Take input from bottom layers and compute useful statistics like classification accuracy. Statistics
could be accumulated throughout multiple iterations.

2.2.2 Data Layers

class HDF5DataLayer
Load data from a list of HDF5 files and feed them to upper layers in mini batches. The layer will do automatic
round wrapping and report epochs after going over a full round of list data sources. Currently randomization is
not supported.

18 Chapter 2. User’s Guide

Mocha Documentation, Release 0.0.2

Each dataset in the HDF5 file should be a 4D tensor. Using the naming convention for image datasets, the
four dimensions are (width, height, channels, number). Here the fastest changing dimension is width, while
the slowest changing dimension is number. Mini-batch splitting will occur in the number dimension. For more
details for 4D tensor blobs used in Mocha, see Blob.

Currently, the dataset should be explicitly in 4D tensor format. For example, if the label for each sample is only
one number, the HDF5 dataset should still be created with dimension (1, 1, 1, number).

The numerical types of the HDF5 datasets should either be Float32 or Float64. Even for multi-class labels,
the integer class indicators should still be stored as floating point.

Note: For N class multi-class labels, the labels should be numerical values from 0 to N-1, even though Julia
use 1-based indexing (See SoftmaxLossLayer).

The HDF5 dataset format is compatible with Caffe. If you want to compare the results of Mocha to Caffe on the
same data, you could use Caffe’s HDF5 Data Layer to read from the same HDF5 files Mocha is using.

source
File name of the data source. The source should be a text file, in which each line specifies a file name to a
HDF5 file to load.

batch_size
The number of data samples in each mini batch.

tops
Default [:data, :label]. List of symbols, specifying the name of the blobs to feed to the top layers.
The names also correspond to the datasets to load from the HDF5 files specified in the data source.

class MemoryDataLayer
Wrap an in-memory Julia Array as data source. Useful for testing.

tops
List of symbols, specifying the name of the blobs to produce.

batch_size
The number of data samples in each mini batch.

data
List of Julia Arrays. The count should be equal to the number of tops, where each Array acts as the data
source for each blob.

2.2.3 Computation Layers

class PoolingLayer
2D pooling over the 2 image dimensions (width and height).

kernel
Default (1,1), a 2-tuple of integers specifying pooling kernel width and height, respectively.

stride
Default (1,1), a 2-tuple of integers specifying pooling stride in the width and height dimensions respec-
tively.

pad
Default (0,0), a 2-tuple of integers specifying the padding in the width and height dimensions respectively.
Paddings are two-sided, so a pad of (1,0) will pad one pixel in both the left and the right boundary of an
image.

2.2. Layers 19

Mocha Documentation, Release 0.0.2

pooling
Default Pooling.Max(). Specify the pooling operation to use.

tops
bottoms

Blob names for output and input.

class LRNLayer
Local Response Normalization Layer. It performs normalization over local input regions via the following
mapping

𝑥 → 𝑦 =
𝑥(︁

𝛽 + (𝛼/𝑛)
∑︀

𝑥𝑗∈𝑁(𝑥) 𝑥
2
𝑗

)︁𝑝

Here 𝛽 is the shift, 𝛼 is the scale, 𝑝 is the power, and 𝑛 is the size of the local neighborhood. 𝑁(𝑥) denotes the
local neighborhood of 𝑥 of size 𝑛 (including 𝑥 itself). There are two types of local neighborhood:

•LRNMode.AcrossChannel(): The local neighborhood is a region of shape (1, 1, 𝑘, 1) centered at 𝑥.
In other words, the region extends across nearby channels (with zero padding if needed), but has no spatial
extent. Here 𝑘 is the kernel size, and 𝑛 = 𝑘 in this case.

•LRNMode.WithinChannel(): The local neighborhood is a region of shape (𝑘, 𝑘, 1, 1) centered at 𝑥.
In other words, the region extends spatially (in both the width and the channel dimension), again with zero
padding when needed. But it does not extend across different channels. In this case 𝑛 = 𝑘2.

kernel
Default 5, an integer indicating the kernel size. See 𝑘 in the descriptions above.

scale
Default 1.

shift
Default 1 (yes, 1, not 0).

power
Default 0.75.

mode
Default LRNMode.AcrossChannel().

tops
bottoms

Names for output and input blobs. Only one input and one output blob are allowed.

class ElementWiseLayer
Element-wise layer implements basic element-wise operations on inputs.

operation
Element-wise operation. Built-in operations are in module ElementWiseFunctors, including Add,
Subtract, Multiply and Divide.

tops
Output blob names, only one output blob is allowed.

bottoms
Input blob names, count must match the number of inputs operation takes.

class PowerLayer
Power layer performs element-wise operations as

𝑦 = (𝑎𝑥+ 𝑏)𝑝

20 Chapter 2. User’s Guide

Mocha Documentation, Release 0.0.2

where 𝑎 is scale, 𝑏 is shift, and 𝑝 is power. During back propagation, the following element-wise deriva-
tives are computed:

𝜕𝑦

𝜕𝑥
= 𝑝𝑎(𝑎𝑥+ 𝑏)𝑝−1

Power layer is implemented separately instead of as an Element-wise layer for better performance because there
are some many special cases of Power layer that could be computed more efficiently.

power
Default 1

scale
Default 1

shift
Default 0

tops
bottoms

Blob names for output and input.

class SplitLayer
Split layer produces identical copies 1 of the input. The number of copies is determined by the length of
the tops property. During back propagation, derivatives from all the output copies are added together and
propagated down.

This layer is typically used as a helper to implement some more complicated layers.

bottoms
Input blob names, only one input blob is allowed.

tops
Output blob names, should be more than one output blobs.

class ChannelPoolingLayer
1D pooling over the channel dimension.

kernel
Default 1, pooling kernel size.

stride
Default 1, stride for pooling.

pad
Default (0,0), a 2-tuple specifying padding in the front and the end.

pooling
Default Pooling.Max(). Specify the pooling function to use.

tops
bottoms

Blob names for output and input.

2.2.4 Loss Layers

class SoftmaxLossLayer
hmm

1 All the data is shared, so there is no actually data copying.

2.2. Layers 21

Mocha Documentation, Release 0.0.2

2.3 Neurons (Activation Functions)

They could be attached to any layers. The neuron of each layer will affect the output in the forward pass and the
gradient in the backward pass automatically unless it is an identity neuron. A layer have an identity neuron by default
2.

class Neurons.Identity
An activation function that does nothing.

class Neurons.ReLU
Rectified Linear Unit. During the forward pass, it inhibit all the negative activations. In other words, it compute
point-wisely 𝑦 = max(0, 𝑥). The point-wise derivative for ReLU is

𝑑𝑦

𝑑𝑥
=

{︃
1 𝑥 > 0

0 𝑥 ≤ 0

Note: ReLU is actually not differentialble at 0. But it has subdifferential [0, 1]. Any value in that interval could
be taken as a subderivative, and could be used in SGD if we generalize from gradient descent to subgradient
descent. In the implementation, we choose 0.

class Neurons.Sigmoid
Sigmoid is a smoothed step function that produces approximate 0 for negative input with large absolute values
and approximate 1 for large positive inputs. The point-wise formula is 𝑦 = 1/(1 + 𝑒−𝑥). The point-wise
derivative is

𝑑𝑦

𝑑𝑥
=

−𝑒−𝑥

(1 + 𝑒−𝑥)
2 = (1− 𝑦)𝑦

2.4 Initializers

Initializers provide init values for network parameter blobs. In Caffe, they are called Fillers.

class NullInitializer
An initializer that does nothing.

class ConstantInitializer
Set everything to a constant.

value
The value used to initialize a parameter blob. Typically this is set to 0.

class XavierInitializer
An initializer based on [BengioGlorot2010], but does not use the fan-out value. It fills the parameter blob by
randomly sampling uniform data from [−𝑆, 𝑆] where the scale 𝑆 =

√︀
3/𝐹in. Here 𝐹in is the fan-in: the number

of input nodes. For a 4D tensor parameter blob with the shape (𝑀,𝑁,𝑃,𝑄), 𝑀 is considered as the fan-in.

class GaussianInitializer
Initialize each element in the parameter blob as independent and identically distributed Gaussian random vari-
ables.

mean
Default 0.

2 This is actually not true: not all layers in Mocha support neurons. For example, data layers currently does not have neurons, but this feature
could be added by simply adding a neuron property to the data layer type. However, for some layer types like loss layers or accuracy layers, it does
not make much sense to have neurons.

22 Chapter 2. User’s Guide

Mocha Documentation, Release 0.0.2

std
Default 1.

2.5 Regularizers

Regularizers add extra penalties or constraints for network parameters to restrict the model complexity. The corre-
spondences in Caffe are weight decays. Regularizers and weight decays are equivalent in back-propagation. The
conceptual difference in the forward pass is that when treated as weight decay, they are not considered as parts of the
objective function. However, in order to save computation, Mocha also omit forward computation for regularizers by
default. We choose to use the term regularization instead of weight decay just because it is easier to understand when
generalizing to sparse, group-sparse or even more complicated structural regularizations.

All regularizers have the property coefficient, corresponding to the regularization coefficient. During training,
a global regularization coefficient can also be specified (see user-guide/solver), that globally scale all local
regularization coefficients.

class NoRegu
Regularizer that impose no regularization.

class L2Regu
L2 regularizer. The parameter blob 𝑊 is treated as a 1D vector. During the forward pass, the squared L2-norm
‖𝑊‖2 = ⟨𝑊,𝑊 ⟩ is computed, and 𝜆‖𝑊‖2 is added to the objective function, where 𝜆 is the regularization
coefficient. During the backward pass, 2𝜆𝑊 is added to the parameter gradient, enforcing a weight decay when
the solver moves the parameters towards the negative gradient direction.

Note in Caffe, only 𝜆𝑊 is added as a weight decay in back propagation, which is equivalent to having a L2
regularizer with coefficient 0.5𝜆.

2.6 Solvers

2.7 Mocha Backends

A backend in Mocha is a component that carries out actual numerical computation. Mocha is designed to support
multiple backends, and switching between different backends should be almost transparent to the rest of the world.

2.7.1 Pure Julia CPU Backend

A pure Julia CPU backend is implemented in Julia. This backend is reasonably fast by making heavy use of the
Julia’s built-in BLAS matrix computation library and performance annotations to help the LLVM-based JIT compiler
producing high performance instructions.

A pure Julia CPU backend could be instantiated by calling the constructor CPUBackend(). Because there is no
external dependency, it should runs on any platform that runs Julia.

If you have many cores in your computer, you can play with the number of threads used by the Julia’s BLAS matrix
computation library by:

blas_set_num_threads(N)

Depending on the problem size and a lot of other factors, using larger N is not necessarily faster.

2.5. Regularizers 23

http://julia.readthedocs.org/en/latest/manual/performance-tips/#performance-annotations

Mocha Documentation, Release 0.0.2

2.7.2 CPU Backend with Native Extension

Mocha comes with C++ implementations of some bottleneck computations for the CPU backend. In order to use the
native extension, you need to build the native code first (if it is not built automatically when installing the package).

Pkg.build("Mocha")

After successfully building the native extension, it could be enabled by setting the environment variable. On bash or
zsh, execute

export MOCHA_USE_NATIVE_EXT=true

before running Mocha. You can also set the environment variable inside the Julia code:

ENV["MOCHA_USE_NATIVE_EXT"] = "true"

using Mocha

Note you should set the environment variable before loading the Mocha module. Otherwise Mocha will not load the
native extension sub-module at all.

The native extension uses OpenMP to do parallel computation on Linux. The number of OpenMP threads used could
be controlled by the OMP_NUM_THREADS environment variable. Note this variable is not specific to Mocha. If you
have other programs that uses OpenMP, setting this environment variable in a shell will also affect those problems
started subsequently. If you want to restrict to Mocha, simply set the variable in the Julia code:

ENV["OMP_NUM_THREADS"] = 1

Note setting to 1 disabled the OpenMP parallelization. Depending on the problem size and a lot of other factors, using
multi-thread OpenMP parallelization is not necessarily faster because of the overhead of multi-threads.

The parameter for the number of threads used by the BLAS library applies to the CPU backend with native extension,
too.

OpenMP on Mac OS X

When compiling the native extension on Mac OS X, you will get a warning that OpenMP is disabled. This is because
currently clang, the built-in compiler for OS X, does not officially support OpenMP yet. If you want to try OpenMP
on OS X, please refer to Clang-OMP and compile manually (see below).

Native Extension on Windows

The native extension does not support Windows because automatic building script does not work on Windows. How-
ever, the native codes themselves does not use any OS specific features. If you have a compiler installed on Windows,
you could try to compile the native extension manually. However, I have not tested the native extension on Windows
personally.

Compile Native Extension Manually

The native codes are located in the deps directory of Mocha. Use

Pkg.dir("Mocha")

to find out where Mocha is installed. You should compile it as a shared library (DLL on Windows). However,
currently the filename for the library is hard-coded to be libmochaext.so, with a .so extension, regardless of the
underlying OS.

24 Chapter 2. User’s Guide

http://openmp.org/wp/
http://clang-omp.github.io/

Mocha Documentation, Release 0.0.2

2.7.3 CUDA Backend

GPU has been shown to be very effective at training large scale deep neural networks. NVidia® recently released a
GPU accelerated library of primitives for deep neural networks called cuDNN. Mocha implemented a CUDA backend
by combining cuDNN, cuBLAS and plain CUDA kernels.

In order to use the CUDA backend, you need to have CUDA-compatible GPU devices. The CUDA toolkit should be
installed in order to compile the Mocha CUDA kernels. cuBLAS is included in CUDA distribution. But cuDNN needs
to be installed separately. You could obtain cuDNN from Nvidia’s website by registering as a CUDA developer for
free.

Note: cuDNN requires CUDA 6.5 to run, and currently cuDNN is available to Linux and Windows only.

Before using the CUDA backend, Mocha kernels needs to be compiled. The kernels are located in
src/cuda/kernels. Please use Pkg.dir("Mocha") to find out where Mocha is installed on your system.
We have included a Makefile for convenience, but if you don’t have make installed, the compiling command is as
simple as

nvcc -ptx kernels.cu

After compiling the kernels, you can now start to use the CUDA backend by setting the environment variable
MOCHA_USE_CUDA. For example:

ENV["MOCHA_USE_CUDA"] = "true"

using Mocha

sys = System(CuDNNBackend())
init(sys)

...

shutdown(sys)

Note instead of instantiate a CPUBackend, you now construct a CuDNNBackend. The environment variable should
be set before loading Mocha. It is designed to use conditional loading so that the pure CPU backend could still run on
machines without any GPU device or CUDA library installed.

2.8 Tools

2.8.1 Importing Trained Model from Caffe

Overview

Mocha provides a tool to help importing Caffe’s trained models. Importing Caffe’s model consists of two steps:

1. Translating the network architecture definitions: this needs to be done manually. Typically for each layer
used in Caffe, there is an equivalent in Mocha, so translating should be relatively straightforward. See the
CIFAR-10 tutorial for an example of translating Caffe’s network definition. You need to make sure to use the
same name for the layers so that when importing the learned parameters, Mocha is able to find the correspon-
dence.

2. Importing the learned network parameters: this could be done automatically, and is the main topic of this
document.

2.8. Tools 25

https://developer.nvidia.com/cuDNN
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cuDNN

Mocha Documentation, Release 0.0.2

Caffe uses a binary protocol buffer file to store trained models. Instead of parsing this complicated binary file, we
provide a tool to export the model parameters to standard HDF5 format, and import the HDF5 file from Mocha. As a
result, you need to have Caffe installed to do the importing.

Exporting Caffe’s Snapshot to HDF5

Caffe’s snapshot files contains some extra information, what we need is only the learned network parameters.
The strategy is to use Caffe’s built-in API to load their model snapshot, and then iterate all network layers in
memory to dump layer parameters to HDF5 file. In the tools directory of Mocha’s source root, you can find
dump_network_hdf5.cpp.

Put that fine in Caffe’s tools directory, and re-compile Caffe. The tool should be built automatically, and the
executable file could typically be found in build/tools/dump_network_hdf5. Run the tool as following:

build/tools/dump_network_hdf5 \
examples/cifar10/cifar10_full_train_test.prototxt \
examples/cifar10/cifar10_full_iter_70000.caffemodel \
cifar10.hdf5

where the arguments are Caffe’s network definition, Caffe’s model snapshot you want to export and the output HDF5
file, respectively.

Currently, in all the layers Mocha supports, only InnerProductLayer and ConvolutionLayer con-
tains trained parameters. When some other layers are needed, it should be straightforward to modify
dump_network_hdf5.cpp to include proper rules for exporting.

Importing HDF5 Snapshot to Mocha

Mocha has a unified interface to import the HDF5 model we just exported. After constructing the network with the
same architecture as translated from Caffe, you can import the HDF5 file by calling

using HDF5
h5open("/path/to/cifar10.hdf5", "r") do h5
load_network(h5, net)

end

Actually, net does not need to be the exactly the same architecture. What it does is to try to find the parameters for
each layer in the HDF5 archive. So if the Mocha architecture contains fewer layers, it should be fine.

By default, if the parameters for a layer could not be found in the HDF5 archive, it will fail on error. But you could also
change the behavior by passing false as the third argument, indicating do not panic if parameters are not found in
the archive. In this case, Mocha will use the associated initializer to initialize the parameters not found in the archive.

Mocha’s HDF5 Snapshot Format

By using the same technique, you can import network parameters trained by any deep learning tools into Mocha, as
long as you could export to HDF5 files. The HDF5 file that Mocha could import is very simple

• Each parameter (e.g. the filter of a convolution layer) is stored as a 4D tensor dataset in the HDF5 file.

• The dataset name for each parameter should be layer___param. For example, conv1___filter is for
the filter parameter of the convolution layer with the name conv1.

HDF5 file format supports hierarchy. But it is rather complicated to manipulate hierarchies in some tools (e.g.
the HDF5 Lite library Caffe is using), so we decide to use a simple flat format.

26 Chapter 2. User’s Guide

http://www.hdfgroup.org/HDF5/doc/HL/RM_H5LT.html

Mocha Documentation, Release 0.0.2

• In Caffe, the bias parameter for a convolution layer and an inner product layer is optional. It is OK to omit
them on exporting if there is no bias. You will get a warning message when importing in Mocha. Mocha will
use the associated initializer (by default initializing to 0) to initialize the bias.

2.8. Tools 27

Mocha Documentation, Release 0.0.2

28 Chapter 2. User’s Guide

CHAPTER 3

Developer’s Guide

3.1 Blob

3.2 Indices and tables

• genindex

• modindex

• search

29

Mocha Documentation, Release 0.0.2

30 Chapter 3. Developer’s Guide

Bibliography

[LeNet] Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P., Gradient-based learning applied to document recognition,
Proceedings of the IEEE, vol.86, no.11, pp.2278-2324, Nov 1998.

[BengioGlorot2010] Y. Bengio and X. Glorot, Understanding the difficulty of training deep feedforward neural net-
works, in Proceedings of AISTATS 2010, pp. 249-256.

31

Mocha Documentation, Release 0.0.2

32 Bibliography

Index

B
batch_size (HDF5DataLayer attribute), 19
batch_size (MemoryDataLayer attribute), 19
bottoms (ChannelPoolingLayer attribute), 21
bottoms (ElementWiseLayer attribute), 20
bottoms (LRNLayer attribute), 20
bottoms (PoolingLayer attribute), 20
bottoms (PowerLayer attribute), 21
bottoms (SplitLayer attribute), 21

C
ChannelPoolingLayer (built-in class), 21
ConstantInitializer (built-in class), 22

D
data (MemoryDataLayer attribute), 19

E
ElementWiseLayer (built-in class), 20

G
GaussianInitializer (built-in class), 22

H
HDF5DataLayer (built-in class), 18

K
kernel (ChannelPoolingLayer attribute), 21
kernel (LRNLayer attribute), 20
kernel (PoolingLayer attribute), 19

L
L2Regu (built-in class), 23
LRNLayer (built-in class), 20

M
mean (GaussianInitializer attribute), 22
MemoryDataLayer (built-in class), 19
mode (LRNLayer attribute), 20

N
Neurons.Identity (built-in class), 22
Neurons.ReLU (built-in class), 22
Neurons.Sigmoid (built-in class), 22
NoRegu (built-in class), 23
NullInitializer (built-in class), 22

O
operation (ElementWiseLayer attribute), 20

P
pad (ChannelPoolingLayer attribute), 21
pad (PoolingLayer attribute), 19
pooling (ChannelPoolingLayer attribute), 21
pooling (PoolingLayer attribute), 19
PoolingLayer (built-in class), 19
power (LRNLayer attribute), 20
power (PowerLayer attribute), 21
PowerLayer (built-in class), 20

S
scale (LRNLayer attribute), 20
scale (PowerLayer attribute), 21
shift (LRNLayer attribute), 20
shift (PowerLayer attribute), 21
SoftmaxLossLayer (built-in class), 21
source (HDF5DataLayer attribute), 19
SplitLayer (built-in class), 21
std (GaussianInitializer attribute), 22
stride (ChannelPoolingLayer attribute), 21
stride (PoolingLayer attribute), 19

T
tops (ChannelPoolingLayer attribute), 21
tops (ElementWiseLayer attribute), 20
tops (HDF5DataLayer attribute), 19
tops (LRNLayer attribute), 20
tops (MemoryDataLayer attribute), 19
tops (PoolingLayer attribute), 20
tops (PowerLayer attribute), 21

33

Mocha Documentation, Release 0.0.2

tops (SplitLayer attribute), 21

V
value (ConstantInitializer attribute), 22

X
XavierInitializer (built-in class), 22

34 Index

	Tutorials
	Training LeNet on MNIST
	Alex’s CIFAR-10 tutorial in Mocha

	User's Guide
	Networks
	Layers
	Neurons (Activation Functions)
	Initializers
	Regularizers
	Solvers
	Mocha Backends
	Tools

	Developer's Guide
	Blob
	Indices and tables

	Bibliography

